
Quick review of other methods for shape match-
ing

• Shape distributions

• Shape contexts

• Hamza-Krim

• Boutin-Kemper

Assignment: write a 1/2 page summary of each of those approaches. Papers

are posted on course webpage. Due Monday Feb. 24th.
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Let’s go back to formulation:  
from hard objects to soft objects

Theoretical consequences: from sets to probability measures.

Practical consequences: from combinatorial optimization to continuous 
optimization
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• Hausdorff distance. For (compact) subsets A, B of a (compact) metric
space (Z, d), the Hausdorff distance between them, dZ

H
(A, B), is defined

to be the infimal ε > 0 s.t.

A ⊂ Bε and B ⊂ Aε

Equivalently,

dZ
H(A, B) = max(max

b∈B
min
a∈A

d(a, b),max
a∈A

min
b∈B

d(a, b)).

For a subset A of a metric space (X, d) we will use the notation
d(x, A) := infa∈A d(x, a).

Theorem ([BBI], Proposition 7.7.3). The Hausdorff distance

is a metric on the set of all objects (i.e. compact subsets) of X, C(X).
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(X, dX)

Iso(X)

(C(X), dX
H
) (C(X), dX

H,iso)

the ambient space objects

isometry group

objects

objects modulo 
isometries

isometry group

The usual setup for Extrinsic 
shape matching
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Theorem ([BBI], Blaschke’s theorem). If (X, dX) is compact, then (C(X), dX
H
)

is also compact.
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correspondences

11

Definition [Correspondences]

For sets A and B, a subset R ⊂ A×B is a correspondence (between A and B)
if and and only if

• ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R

• ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R

Let R(A, B) denote the set of all possible correspondences between sets A
and B.

Remark. Note that R(A, B) �= ∅. Indeed, A×B is always in R(A, B).
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correspondences

12

Note that when A and B are finite, R ∈ R(A, B) can be represented by a
matrix ((ra,b)) ∈ {0, 1}nA×nB s.t.

�

a∈A

rab ≥ 1 ∀b ∈ B

�

b∈B

rab ≥ 1 ∀a ∈ A

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

B

A
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Examples and remarks

The proof of the results below is an exercise.

• If A = {a1, . . . , an} and B = {p}, then, R(A, B) = {R}, where R =

{(xi, p), 1 ≤ i ≤ n}..

• If A = {a1, . . . , an} and B = {b1, . . . , bn}, then for all π ∈ Πn (permuta-

tions of {1, . . . , n}), {(ai, bπi), 1 ≤ i ≤ n} ∈ R(A, B). Hence, correspon-

dences include bijections (when these exist).

• Composition of correspondences. If A, B, C are sets and R ∈ R(A, B)

and S ∈ R(B, C), then

T := {(a, c)| ∃b ∈ B s.t. (a, b) ∈ R and (b, c) ∈ S}

belongs to R(A, C).

• Let f : A → B and g : B → A be given. Then,

{(a, f(a)), a ∈ A} ∪{ (g(b), b), b ∈ B} ∈ R(A, B).

Monday, February 17, 2014



Theorem (An important observation, [M07]). Let (X, d) be a compact metric

space. Then, for all compact A, B ⊂ X,

dX
H(A, B) = inf

R∈R(A,B)
sup

(a,b)∈R
d(a, b).

Proof. Exercise.

Remark. We will use the following notation: for a function f : Z → R and

C ⊂ Z, we let

�f�L∞(C) := sup
z∈C

|f(c)|.

Remark. Then, we can write in a somewhat abbreviated way that will be used

for reasoning about potential candidates for dist,

dX
H(A, B) = inf

R∈R(A,B)
�d�L∞(R).

Exercise. Using the expression for the H-distance above and the remark on

composition of correspondences prove the triangle inequality for the H-distance.
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Soft objects
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• Probability Measures. Consider a finite set A = {a1, . . . , an}. A set of
weights, W = {w1, . . . , wn} on A is called a probability measure on A if wi ≥ 0
and

�
i w1 = 1.

Probability measures can be interpreted as a way of assigning (relative) impor-
tance to different points.

There is a more general definition that we do not need (today). But you should
become familiar with it for general culture, see [BBI, Def. 1.7.1].
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0 2 4 8

• Support of a measure. Given a metric space (X, d) and a probability
measure ν on X, the support of ν consists of the points of X with non-zero
mass. We use the notation supp(ν) for the support of a probability measure ν
on X.

Example. Consider for example the case of X = R with the usual metric. Let
ν be the probability measure on the real line that assigns mass 1/4, 5/12, 1/12
and 1/4 to points 0, 2, 4 and 8, respectively. Then, there is no mass anywhere
else and supp(ν) = {0, 2, 4, 8}.
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correspondences and 
measure couplings

18

Let A and B be compact subsets of the compact metric space (X, d) and µA

and µB be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure µ on A×B s.t. (in
the finite case this means ((µa,b)) ∈ [0, 1]nA×nB , i.e. µ is a matrix.)

•
�

a∈A µab = µB(b) ∀b ∈ B

•
�

b∈B µab = µA(a) ∀a ∈ A

Let M(µA, µB) be the set of all couplings of µA and µB .
Notice that in the finite case, ((µa,b)) must satisfy nA + nB linear constraints.
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Example. In this example,

supp(µ) = {(x1, y1), (x2, y2), (x2, y3), (x3, y2), (x3, y3), (x4, y1), (x4, y2), (x4, y3)}.

Example. Assume X = {x1, . . . , xn} and Y = {p}, together with an arbitrary
µX supported on X and µY s.t. µY (p) = 1 (all the mass is in p). Prove that

M(µX , µY ) = {µX}.

(compare with exercise for correspondences)
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• Composition of measure couplings. Can you guess what is the construc-
tion in this setting? Cf. with ”composition of correspondences”.

Remark. You should gain some intuition about the duality between correspon-
dences and measure couplings. Think about this on your own.

• Product measure. Assume A and B are finite sets and µA and µB are
probability measures on A and B, respectively. We define a probability measure
on A×B, called the product measure and denoted µA ⊗ µB s.t.

µA ⊗ µB(a, b) = µA(a)× µB(b).

Remark. It is then clear that M(µA, µB) �= ∅ as (exercise!!) µA ⊗ µB ∈
M(µX , µY ).
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21

Proposition (µ↔ R). Let A, B be sets.

• Given (A, µA) and (B, µB), and µ ∈M(µA, µB), then

R(µ) := supp(µ) ∈ R(A, B).

• König’s Lemma. [gives conditions for R → µ] [We don’t need precise
statement.]

Proof. Omitted!

Remark. Let f : X → be a function and ν a probability measure on X. Then,
for p ≥ 1 the Lp norm of f w.r.t. to ν is (in the case of X finite)

�f�Lp(ν) :=

��

X
|f(x)|pν. (x)

�1/p

=

�
�

x∈X

ν(x)|f(x)|p
�1/p
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Remark. • Correspondences and measure couplings provide two different

ways of putting objects in correspondence. This is necessary whenever one

tries to compare two objects.

• correspondence are combinatorial gadgets. They pairings they encode are

hard as opposed to the soft or relaxed notion provided by measure cou-

plings.

• Measure couplings are continous gadgets. As a general, imprecise rule,

using them instead will lead to continuous optimization problems instead

of combinatorial optimization problems. ”CnOPs are easier to deal with

than CbOPs ”.
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• Now, given pX, dXq we looked at CpXq: all the objects (closed subsets) in

X and endowed that with the Hausdorff distance. These are called ’hard’

objects.

• We can instead look at CwpXq: all the probability measures on X and try

to put a metric there (spoiler: it will be called Wasserstein distance)

• Notice that probability measures have more information than sets:

CwpXq Ñ CpXq

but given A P CpXq there may be many elements in CwpXq compatible

with A!
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Wasserstein distance

24

dH(A, B) = inf
R∈R(A,B)

�d�L∞(R)

⇓ (R ↔ µ)

dW,∞(A, B) = inf
µ∈M(µA,µB)

�d�L∞(R(µ))

⇓ (L∞ ↔ Lp)

dW,p(A, B) = inf
µ∈M(µA,µB)

�d�Lp(A×B,µ)
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Remark. When A and B are finite, a more explicit expression for the W-
distance is

dX
W,p(A, B) := min

µ




�

a,b

d(a, b)p µ(a, b)




1/p

where µ ∈M(µA, µB).

Remark. Notice that computing the W-distance leads to solving an LOP with
linear and bound constraints.

Remark. We will see that dX
H
≤ dX

W,∞. Can you prove this?
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x1 x2 x3 x4 y1 y2 y3

3 4 5
3
1
4
2

Remark. • The Wasserstein distance is a.k.a. EMD (Eart Mover’s Dis-
tance) a.k.a. Kantorovich-Rubinstein.

• there is a very nice physical interpretation: µA represent a certain source
profile of nA bricks that must be moved from a certain location to another.
The target profile at the destination, represented by µB, is such that the
total number of bricks used is equal to nA.

• The cost of moving a brick from location x to location y is d(x, y), the
horizontal distance between x and y.

• A measure coupling, in a first approximation, is a integer valued matrix
that tells you how to distribute bricks in a source pile to the destination.
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x1 x2 x3 x4 y1 y2 y3

3 2 5
3 3 0 0
1 0 0 1
4 0 0 4
2 0 2 0

cost(µ) =
�

x,y

d(x, y)µx,y

0   1   2   3   4   5   6   7

cost(µ) = (3 · 5 + 1 · 6 + 4 · 5 + 2 · 3) = 47
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Theorem ([Villani], Prokhorov’s theorem). Let (X, dX) be a compact metric
space. Then, Cw(X) with the Wasserstein distance is also a compact metric
space.

This is an analogue to Blacshke’s theorem (meditate about this!)

For a compact metric space (X, d) let

Cw(X) := {(A, µA), A ∈ C(X) and supp(µA) = A}.

This is the collection of all weighted objects in X.

Theorem ([Villani], see [M07]). Let (X, dX) be a compact metric space. The
Wasserstein distance is a metric on Cw(X).
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Some more information ..
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See papers under Week of Feb 24-28
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