Quick review of other methods for shape match-
ing

e Shape distributions

e Shape contexts

e Hamza-Krim

e Boutin-Kemper

Assignment: write a 1/2 page summary of each of those approaches. Papers
are posted on course webpage. Due Monday Feb. 24th.
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diz2 0 daz doy
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Shape Distributions [Osada-et-al ]
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Shape Distributions [Osada-et-al ]
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Shape Contexts
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Eccentricities
(Hamza-Krim)
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Let’s go back to formulation:
from hard objects to soft objects

Theoretical consequences: from sets to probability measures.

Practical consequences: from combinatorial optimization to continuous
optimization
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¢ Hausdorff distance. For (compact) subsets A, B of a (compact) metric

space (Z,d), the Hausdorff distance between them, d%,(A, B), is defined
to be the infimal £ > 0 s.t.

A C Bf and B C A®

Equivalently,

Z _ . .
dy/ (A, B) = max(rgéaéc min d(a,b), max min d(a,b)).

For a subset A of a metric space (X, d) we will use the notation

d(x,A) :=inf,cad(x,a).

Theorem (|[BBI|, Proposition 7.7.3). The Hausdorff distance
is a metric on the set of all objects (i.e. compact subsets) of X, C(X).
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Theorem ([BBI], Blaschke’s theorem). If (X, dx) is compact, then (C(X),d3)
1s also compact.
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correspondences

Definition [Correspondences]

For sets A and B, a subset R C A x B is a correspondence (between A and B)
if and and only if

e Vace A, there exists b € B s.t. (a,b) € R

e Vb e B, there exists a € A s.t. (a,b) € R

Let R(A, B) denote the set of all possible correspondences between sets A
and B.

Remark. Note that R(A,B) # 0. Indeed, A x B is always in R(A, B).
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correspondences

Note that when A and B are finite, R € R(A, B) can be represented by a
matrix ((rqp)) € {0,1}"A%"5B s.t.

Zra521 Vb € B

aEA

Zrabz 1 Vae A
beB

— o — o —
— o o — o
o o — o o

o o o — —
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correspondences

Note that when A and B are finite, R € R(A, B) can be represented by a
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Examples and remarks

The proot of the results below is an exercise.

e If A = {ay,...,a,} and B = {p}, then, R(A,B) = {R}, where R =
{(x;,p), 1 <i<n}.

e If A=1{ay,...,a,} and B = {by,...,b,}, then for all 7 € II,, (permuta-
tions of {1,...,n}), {(a;,bx,), 1 <1 < n} € R(A, B). Hence, correspon-
dences include leGCthIlS (When these exist).

¢ Composition of correspondences. If A, B, aresetsand R € R(A, B)
and S € R(B, (), then

T :={(a,c)|3db € Bs.t.(a,b) € Rand (b,c) € S}
belongs to R(A, C).
e et f:A— Bandg: B — A be given. Then,

1a, fa)), a € Ay Ui (g(b),b), b€ B} € R(A, B).
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Theorem (An important observation, [MOT7]). Let (X,d) be a compact metric
space. Then, for all compact A, B C X,

d2 (A, B) =  inf d(a.b).
H( ’ ) R€712r(lA,B) (aS,IgI;R (CL, )

Proof. Exercise.

Remark. We will use the following notation: for a function f : Z — R and
C C Z, we let

[fllze(c) == sup [f(c)].
ze(

Remark. Then, we can write in a somewhat abbreviated way that will be used
for reasoning about potential candidates for dist,

1 (A, B) R€71€I(1A,B)H | Lo (R)

Exercise. Using the expression for the H-distance above and the remark on
composition of correspondences prove the triangle inequality for the H-distance.
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Soft objects
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e Probability Measures. Consider a finite set A = {ay,...,a,}. A set of
weights, W = {w1,...,w,} on A is called a probability measure on A if w; > 0

and Zz w1 — 1.

Probability measures can be interpreted as a way of assigning (relative) impor-
tance to different points.

There is a more general definition that we do not need (today). But you should
become familiar with it for general culture, see [BBI, Def. 1.7.1].
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e Support of a measure. Given a metric space (X,d) and a probability
measure v on X, the support of v consists of the points of X with non-zero

mass. We use the notation supp(v) for the support of a probability measure v
on X.

Example. Consider for example the case of X = R with the usual metric. Let
v be the probability measure on the real line that assigns mass 1/4, 5/12, 1/12

and 1/4 to points 0, 2, 4 and 8, respectively. Then, there is no mass anywhere
else and supp(v) = {0, 2,4, 8}.
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correspondences and
measure couplings

Let A and B be compact subsets of the compact metric space (X,d) and 4
and yup be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure pp on A x B s.t. (in
the finite case this means ((uq5)) € [0, 1]"4%"B i.e. u is a matriz.)

o > tiay = pp(b) Vb B

° ZbEB Uab = ,uA(a) Va € A

Let M(pua, ) be the set of all couplings of ua and up.
Notice that in the finite case, ((uq,p)) must satisfy ng + np linear constraints.
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Example. In this example,

supp(p) = {(z1, 1), (T2, Y2), (x2,Y3), (T3,y2), (T3, Y3), (x4, Y1), (T4, y2), (T4, y3) }.

Example. Assume X ={x1,...,x,} and Y = {p}, together with an arbitrary
wx supported on X and py s.t. uy(p) =1 (all the mass is in p). Prove that

Mpx, py) ={px}.

(compare with exercise for correspondences)
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e Composition of measure couplings. Can you guess what is the construc-
tion in this setting”? Cf. with ”composition of correspondences”.

Remark. You should gain some intuition about the duality between correspon-
dences and measure couplings. Think about this on your own.

¢ Product measure. Assume A and B are finite sets and puys and pup are
probability measures on A and B, respectively. We define a probability measure
on A x B, called the product measure and denoted 4 ® upg s.t.

pa @ pp(a,b) = pala) x pp(b).

Remark. [t is then clear that M(pua,up) # 0 as (exercise!!) pas @ pp €
M(px s py ).
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Proposition (u < R). Let A, B be sets.

o Given (A, ua) and (B, ug), and p € M(ua, ug), then

R(p) := supp(p) € R(A, B).

e Konig’s Lemma. [gives conditions for R — u/ [We don’t need precise
statement.|

Proof. Omitted! []

Remark. Let f : X — be a function and v a probability measure on X. Then,
for p > 1 the LP norm of f w.r.t. to v is (in the case of X finite)

[fllzr@) == (/X \f(x)|pl/(x)>1/p B <Z V({ﬂ)f(@p) 1/p

reX

21
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Remark. e (orrespondences and measure couplings provide two different
ways of putting objects in correspondence. This is necessary whenever one
tries to compare two objects.

e correspondence are combinatorial gadgets. They pairings they encode are
hard as opposed to the soft or relaxed notion provided by measure cou-
plings.

o Measure couplings are continous gadgets. As a general, imprecise rule,
using them wnstead will lead to continuous optimization problems instead
of combinatorial optimization problems. "CnOPs are easier to deal with

than CbOPs 7.
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e Now, given (X, dx) we looked at C(X): all the objects (closed subsets) in
X and endowed that with the Hausdorft distance. These are called "hard’
objects.

e We can instead look at C*(X): all the probability measures on X and try
to put a metric there (spoiler: it will be called Wasserstein distance)

e Notice that probability measures have more information than sets:
CY(X) — C(X)

but given A € C(X) there may be many elements in C*(X) compatible
with Al
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Wasserstein distance

n(d B) = dof ldllr)

| (R« p)

dyw,o(A,B) = inf  ||d| L=(r()

neM(pa,pp)

J (L < LP)

dw (A B)=  inf  |d|ls.
W)p( ) ,uE./\/l(,uA,,uB)H HL (AXB,pu)

24
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Remark. When A and B are finite, a more explicit expression for the W-

distance 18
1/p

X .
dyy ,(A, B) := min z;d(a, b)? u(a,b)

where 1 € M(pua, up).

Remark. Notice that computing the W-distance leads to solving an LOP with
linear and bound constraints.

Remark. We will see that d%‘; < d%)m. Can you prove this?
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Remark. o The Wasserstein distance is a.k.a. EMD (Eart Mover’s Dis-
tance) a.k.a. Kantorovich-Rubinstein.

e there is a very nice physical interpretation: s represent a certain source
profile of na bricks that must be moved from a certain location to another.
The target profile at the destination, represented by ng, is such that the
total number of bricks used is equal to n 4.

e The cost of moving a brick from location x to location y is d(xz,y), the
horizontal distance between xr and y.

o A measure coupling, in a first approximation, s a integer valued matrix
that tells you how to distribute bricks in a source pile to the destination.

T1 Lo T3 T4 Yyr Y2 Ys
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Ol 2 3 45 6 7

cost(u) =(3-5+1-64+4-5+2-3) =47
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1 To T3 T4 Y Y2
._‘_‘._H_._.‘_‘ >

O I 2 3 45 6 7

cost(u) =(3-5+1-64+4-5+2-3) =47
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For a compact metric space (X, d) let
C(X) :={(4,pa), A € C(X) and supp(pa) = A}.

This is the collection of all weighted objects in X.

Theorem ([Villani|, see [MOT7]). Let (X,dx) be a compact metric space. The
Wasserstein distance is a metric on C¥(X).

Theorem ([Villani|, Prokhorov’s theorem). Let (X,dx) be a compact metric
space. Then, C¥(X) with the Wasserstein distance is also a compact metric
space.

This is an analogue to Blacshke’s theorem (meditate about this!)
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Transportation theory (mathematics)

From Wikipedia, the free encyclopedia

In mathematics and economics, transportation theory is a name given to the study of optimal transportation and allocation of resources.
The problem was formalized by the French mathematician Gaspard Monge in 1781.1")

In the 1920s A.N. Tolstoi was one of the first 1o study the transportation problem mathematically. In 1930, in the collection Transportation Planning Volume Ifor
the National Commissariat of Transportation of the Soviet Union, he published a paper "Methods of Finding the Minimal Kilometrage in Cargo-transportation in
space"_(zl(3]

Major advances were made in the field during World War Il by the SovietRussian mathematician and economist Leonid Kantorovich.!*) Consequently, the
problem as it is stated is sometimes known as the Monge-Kantorovich transportation problem.

Contents [hide)
1 Motivation
1.1 Mines and factories
1.2 Moving books: the importance of the cost function
2 Abstract formulation of the problem
2.1 Monge and Kantorovich formulations
2.2 Duality formula
3 Solution of the problem
3.1 Optimal transportation on the real line
3.2 Separable Hilbert spaces
4 See also
5 References
6 Further reading
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Mines and factories [edit]

Suppose that we have a collection of n mines mining iron ore, and a collection of n factories which consume the iron ore that the mines produce. Suppose for
the sake of argument that these mines and factories form two disjoint subsets M and F of the Euclidean plane RZ2. Suppose also that we have a cost function
c:R?xR? - [0, =), so that ¢(x, y) is the cost of transporting one shipment of iron from x to y. For simplicity, we ignore the time taken to do the transporting. We
are also assume that each mine can supply only one factory (no splitting of shipments) and that each factory requires precisely one shipment to be in operation
(factories cannot work at half- or double-capacity). Having made the above assumptions, a transport planis a bijection T: M = F-i.e. an arrangement whereby
each mine m e M supplies precisely one factory T{m) € F. We wish to find the optimal transport plan, the plan T whose total cost

o(T) = ) c(m,T(m))

meM

is the least of all possible transport plans from Mto F. This motivating special case of the transportation problem is in fact an instance of the assignment
problem.
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Gaspard Monge

Born May 9, 1746
Beaune, Cote-d'Or

Died July 28, 1818
Paris

Nationality French

Leonid Kantorovich

Leonid Kantorovich in 1975

Born 19 January 1912
Saint Petersburg, Russian Empire
Died 7 April 1986 (aged 74)

Moscow, Russia, USSR
Nationality Soviet
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Leonid Kantorovich

From Wikipedia, the free encyclopedia

Leonid Vitaliyevich Kantorovich (Russian: Jleonna Butanseeny KaHTopoeuy, IPA: [I1enit vr'taltvite kente
rovitg] («¢ listen) (19 January 1912 — 7 April 1986) was a Soviet mathematician and economist, known for his
theory and development of techniques for the optimal allocation of resources. He was the winner of the Nobel
Prize in Economics in 1975 and the only winner of this prize from the USSR.

Contents [hide]
1 Biography
2 Mathematics
3 See also
4 References
5 Nobel prize lecture
6 Further reading
7 External links

Biography [edit]

Kantorovich was born on 19 January 1912, to a Russian Jewish family.['] His father was a doctor practicing in
Saint Petersburg.?) In 1926, at the age of fourteen, he began his studies at the Leningrad University. He
graduated from the Faculty of Mathematics in 1930, and began his graduate studies. In 1934, at the age of 22

years, he became a full professor.

Later, Kantorovich worked for the Soviet government. He was given the task of optimizing production in a
plywood industry. He came up (1939) with the mathematical technique now known as linear programming, some

Monday, February 17, 2014



WIKIPEDIA
The Free Encyclopedia

Main page

Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikimedia Shop

v Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

» Tools
» Printexport

v Languages
Francais
ZEdit links

Article Talk

Earth mover's distance

From Wikipedia, the free encyclopedia

Read Edit

View history

This article needs attention from an expert in Mathematics. Please add a reason or a talk parameter to this
template to explain the issue with the article. WikiProject Mathematics (or its Portal) may be able to help recruit an
expent. (October 2008)

Create account @& Log in

Q

In computer science, the earth mover's distance (EMD) is a measure of the distance between two probability distributions over a region D. In mathematics,
this is known as the Wasserstein metric. Informally, if the distributions are interpreted as two different ways of piling up a certain amount of dirt over the region D,
the EMD is the minimum cost of turning one pile into the other; where the cost is assumed to be amount of dirt moved times the distance by which it is moved.!")

The above definition is valid only if the two distributions have the same integral (informally, if the two piles have the same amount of dirt), as in normalized
histograms or probability density functions. In that case, the EMD is equivalent to the 1st Mallows distance or 1st Wasserstein distance between the two

distributions.!2)(3]

Contents [hide]
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See papers under Week of Feb 24-28
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