
State-of-the-Art in Shape MathingRemo C. Veltkamp and Mihiel HagedoornUtreht University, Department of Computing SienePadualaan 14, 3584 CH Utreht, The Netherlandsmh�s.ruu.nl, Remo.Veltkamp�s.ruu.nl1 IntrodutionLarge image databases are used in an extraordinary number of multimedia appliations in �eldssuh as entertainment, business, art, engineering, and siene. Retrieving images by their ontent,as opposed to external features, has beome an important operation. A fundamental ingredient forontent-based image retrieval is the tehnique used for omparing images. There are two generalmethods for image omparison: intensity-based (olor and texture) and geometry-based (shape).A reent user survey about ognition ognition aspets of image retrieval shows that users aremore interested in retrieval by shape than by olor and texture [SdLV99℄. However, retrieval byshape is still onsidered one of the most diÆult aspets of ontent-based searh. Indeed, systemssuh as IBM's QBIC, Query By Image Content [QBI℄, perhaps one of the most advaned imageretrieval systems to date, is relatively suessful in retrieving by olor and texture, but performspoorly when searhing on shape. A similar behavior shows the new Alta Vista photo �nder [AVP℄.Shape mathing is a entral problem in visual information systems, omputer vision, patternreognition, and robotis. Appliations of shape mathing inlude industrial inspetion, �ngerprintmathing, and ontent-based image retrieval. Figures 1, 2, and 3 illustrate a few typial problemsthat need to be solved:1. Figure 1 illustrates an appliation in agriultural inspetion. A typial problem here is to �nda mathing transformation. Based on shape harateristis, we an �nd the transformationthat mathes one piee of fruit with another.2. Figure 2 shows a point set mathing appliation in �ngerprint identi�ation. After extrationof featuring points, two point sets must be mathed. The diÆulty here is that there istypially no one to one orrespondene between the two point sets. The mathing tehniqueshould be robust against noise and olusion.3. Figure 3 shows an appliation in multimedia retrieval. Given the query shape at the left,the task is to �nd all pitures that ontain similar shapes. The typial problem is that onlypiees of the query shape appear in only parts of some of the database pitures.This paper deals with the mathing of geometri shapes, with an emphasis on tehniques fromomputational geometry. We are onerned with geometri patterns suh as �nite point sets,urves, and regions. For an overview of more general shape analysis, see [Lon98℄.Mathing deals with transforming a pattern, and measuring the resemblane with anotherpattern using some dissimilarity measure. Pattern mathing and shape mathing are ommonlyused interhangeably. However, more formally, the shape of a pattern is the pattern under alltransformations in a transformation group. The mathing problem is studied in various forms.Given two patterns and a dissimilarity measure:� (omputation problem) ompute the dissimilarity between the two patterns,� (deision problem) for a given threshold, deide whether the dissimilarity between two pat-terns is smaller than the threshold, 1



Figure 1: Shape mathing in fruit inspetion.� (deision problem) for a given threshold, deide whether there exists a transformation suhthat the dissimilarity between the transformed pattern and the other pattern is smaller thanthe threshold,� (optimization problem) �nd the transformation that minimizes the dissimilarity between thetransformed pattern and the other pattern.Sometimes the time omplexities to solve these problems are rather high, so that it makessense to devise approximation algorithms that �nd an approximation:� Given two patterns, �nd a transformation that gives a dissimilarity between the two patternsthat is within a spei�ed fator from the minimum dissimilarity.There are several variations on these problems. A pattern an be ompared to a single patternor to many other patterns, in whih ase an indexing struture is needed to speed up the om-parisons. Another variation is to take artefats suh as noise into aount, or to perform partialmathing, i.e. �nding a �nding within a larger pattern.There are various ways to approah the shape mathing problem. In this artile we fous onmethods from omputational geometry. Computational geometry is the subarea of algorithms de-sign that deals with the design and analysis of algorithms for geometri problems involving objetslike points, lines, polygons, and polyhedra. The standard approah taken in omputational geom-etry is the development of exat, provably orret and eÆient solutions to geometri problems.Aspets that play a ruial role in the algorithmi solutions to mathing are the representation ofpatterns, the transformation group, and the dissimilarity measure.

Figure 2: Fingerprint mathing.
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Figure 3: Query hieroglyph (left), and hieroglyphs retrieved from database, from [VV99℄.2 ApproahesMathing has been approahed in a number of ways, inluding tree pruning [Ume93℄, the gener-alized Hough transform or pose lustering [Bal81℄ [Sto87℄, geometri hashing [WR97℄, the align-ment method [HU87℄, statistis [Sma96℄, deformable templates [SP95℄, relaxation labeling [RR80℄,Fourier desriptors [Lon98℄, wavelet transform [JFS95℄, urvature sale spae [MAK96℄, and neu-ral networks [Gol95℄. Without being omplete, in the following subsetions we will desribe andgroup a number of these methods together.2.1 Global image transformsThere is a number of tehniques that transform the image from olor information in the spatialdomain to olor variation information in the frequeny domain. Although suh approahes do notexpliitly enode shape for mathing and retrieval, they represent olor or intensity transitions inthe image, whih typially ours at objet boundaries.A spei� lass of image transformations are wavelet-based transforms. Wavelets are funtionsthat deompose signals (here two-dimensional olor signals) into di�erent frequeny omponents.Eah omponent is then analyzed at a resolution orresponding its sale. Beause the originalimage an be represented as a linear ombination of wavelet funtions, similar to the Fouriertransform, we an proess the images by the wavelet oeÆients. By trunating the oeÆientsbelow a threshold, image data an be sparsely represented, at the ost of loss of detail. A set ofsuh oeÆients an be used as a feature vetor for image mathing.The wavelet transform an be done with di�erent basis funtions. The Haar basis funtions,used by Jaobs et al. [JFS95℄, do not perform well when the query image onsist of a smalltranslation of the target image. This problem is less in the approah of Wang et al. usingDaubehies basis funtions [WWFW97℄.For the purpose of shape mathing, a drawbak of global image transforms is that shapeinformation is not expliitly represented, and that the whole image is enoded, inluding olorand texture information that need not indiate objet transitions. As a result, it is not possibleto measure how muh two di�erent images are similar in terms of shape. Also, due to the globalnature, it is not possible to math a query shape with only a part of an image.2.2 Global Objet MethodsBelow, we mention a few methods that work on an objet as a whole, i.e. a omplete objet area orontour. An important drawbak of all these methods is that omplete objets in images must belearly segmented, whih is in itself an ill-posed problem. Typially the result of a segmentationproess is a partitioning into regions that need not orrespond to whole objets. However, theglobal objet methods work only for whole objets. In general, suh methods are not robustagainst noise and olusions. 3



2.2.1 MomentsWhen a omplete objet in an image has been identi�ed, it an be desribed by a set of momentsmp;q . The (p; q)-moment of an objet O � R2 is given bymp;q = Z(x;y)2O xpyq dx dyor, in terms of pixels in a binary [1; n℄� [1;m℄ image f :nXx=1 mXy=1xpyqf(x; y)where the bakground pixels have value zero, and the objet pixels have value one. The in�nitesequene of moments, p; q = 0; 1; : : : , uniquely determines the shape, and vie verse. Variationsare desribed in [KH90℄ and [Che93℄.Based on suh moments, a number of funtions, moment invariants, an be de�ned that areinvariant under ertain transformations suh as translation, saling, and rotation. Using only alimited number of low order moment invariants, the less ritial and noisy high order momentsare disarded. A number of suh moment invariants an be put into a feature vetor, whih anbe used for mathing. Global objet features suh as area, irularity, eentriity, ompatness,major axis orientation, Euler number, onavity tree, shape numbers, and algebrai moments anall be used for shape desription [BB82℄, [PR92℄. A number of suh features are for example usedby the QBIC system [NBE+93℄.2.2.2 Modal mathingRather than working with the area of an objet, the boundary an be used instead. Samples ofthe boundary an be desribed with Fourier desriptors, the oeÆients of the disrete Fouriertransform [vO92℄.Another form of shape deomposition is the deomposition into an ordered set of eigenvetors,also alled prinipal omponents. Again, the noisy high order omponents an be disarded, usingonly the most robust omponents. The idea is to onsider n points on the boundary of an objet,and to de�ne a matrix D suh that element Dij determines how boundary points i and j of theobjet interat, typially involving the distane between points i and j.The eigenvetors ei of D, satisfying Dei = �ei, i = 1; : : : ; n, are the modes of D, also alledeigenshapes. To math two shapes, take the eigenvetors ei of the query objet, and the eigen-vetors e0j of the target objet, and ompute a mismath value m(ei; e0j). For simpliity, let usassume that the eigenvetors have the same length. For a �xed i = i0, determine the value j0 ofj for whih m(ei0 ; e0j) is minimal. If the value of i for whih m(ei; e0j0) is minimal is equal to i0,then point i of the query and point j of the target math eah other. See for example [GT98℄ and[Sl97℄ for variations on this basi tehnique of modal mathing.2.2.3 Curvature sale spaeAnother approah is the use of a sale spae representation of the urvature of the ontour ofobjets. Let the ontour C be parameterized by ar-length s: C(s) = (x(s); y(s)). The oordinatefuntions of C are onvolved with a Gaussian kernel �� of width �:x�(s) = Z x(s)��(t� s) dt ��(t) = 1p2��2 e� t22�2and the same for y(s). With inreasing value of �, the resulting ontour gets smoother, see�gure 2.2.3, and the number of zero rossings of the urvature along it dereases, until �nally theontour is onvex and the urvature is positive. 4



Figure 4: Contour evolution reduing urvature hanges, seehttp://www.ee.surrey.a.uk/Researh/VSSP/imagedb/demo.html.For ontinuously inreasing �, the positions of the urvature zero-rossings ontinuously movealong the ontour, until two suh positions meet and annihilate. Mathing of two objets an bedone by mathing points of annihilation in the s; � plane [MAK96℄.Another way of reduing urvature hanges is based on the turning angle funtion (see Se-tion 5.1), or tangent spae representation [LL99℄.2.3 Voting shemesThe voting shemes disussed here generally work on so-alled interest points. For the purpose ofvisual information systems, suh points are for example orner points deteted in images.Geometri hashing [LW88, WR97℄ is a method that determines if there is a transformed subsetof the query point set that mathes a subset of a target point set. The method �rst onstrutsa single hash table for all target point sets together. Eah point is represented as e0 + �(e1 �e0) + �(e2 � e0), for some �xed hoie of points e0; e1; e2, and the (�; �)-plane is quantized into atwo-dimensional table, mapping eah real oordinate pair (�; �) to an integer index pair (k; `).Let there be N target point sets Bi. For eah target point set, the following is done. For eahthree non-ollinear points e0; e1; e2 from the point set, express the other points as e0+�(e1�e0)+�(e2 � e0), and append the tuple (i; e0; e1; e2) to entry (k; `). If there are O(m) points in eahtarget point set, the onstrution of the hash table is of omplexity O(Nm4).Now, given a query point set A, hoose three nonollinear points e00; e01; e02 from the point set,and express eah other point as e00 + �(e01 � e00) + �(e02 � e00), and tally a vote for eah tuple(i; e0; e1; e2) in entry (k; `) of the table. The tuple (i; e0; e1; e2) that reeives most votes indiatesthe target point set Ti ontaining the query point set. The aÆne transformation that maps(e00; e01; e02) to the winner (e0; e1; e2) is assumed to be the transformation between the query andthe target. The omplexity of mathing a single query set of n points is O(n). There are several5



variations of this basi method, suh as balaning the hashing table, or avoiding taking all possibleO(n3) 3-tuples.The generalized Hough transform [Bal81℄, or pose lustering [Sto87℄, is also a voting sheme.Here, aÆne transformations are represented by six oeÆients. The quantized transformationspae is represented as a six-dimensional table. Now for eah triplet of points in the query set,and eah triplet of points from the target set, ompute the transformation between the two triples,and tally a vote in the orresponding entry of the table. This must be done for all target pointsets. The entry with the highest sore is assumed to be the transformation between the query andthe target. The omplexity of mathing a single query set is O(Nm3n3).In the alignment method [HU87, Ull96℄, for eah triplet of points from the query set, andeah triplet from the target set, we ompute the transformation between them. With eah suhtransformation, all the other points from the target set are transformed. If they math with querypoints, the transformation reeives a vote, and if the number of votes is above a hosen threshold,the transformation is assumed to be the mathing transformation between the query and thetarget. The omplexity of mathing a single query set is O(Nm4n3).Variations of these methods also work for geometri features other than points, and for othertransformations than aÆne transformations. A omparison between geometri hashing, pose lus-tering, and the alignment method is made in [Wol90℄. Other voting shemes exist, for exampletaking a probabilisti approah [Ols97℄.2.4 Computational GeometryComputational geometry is the subarea of algorithms design that deals with geometri problemsinvolving operations on objets like points, lines, polygons, and polyhedra. Over the past twentyyears the area has grown into a main-stream world-wide researh ativity. The suess of the �eldas a researh disipline an be explained by the beauty of the problems and their solutions, and bythe many appliations in whih geometri problems and algorithms play a fundamental role. Thestandard approah taken in omputational geometry is the development of exat, provably orretand eÆient solutions to geometri problems. See for example the text books [Mul93℄ [O'R94℄[dBvKOS97℄ [BY98℄ and the handbook [GO97℄.The impat of omputational geometry on appliation domains was minor up to a few yearsago. On one hand, the researh ommunity has been developing more interest in appliationproblems and real world onditions, and develops more software implementations of the mosteÆient algorithms available. On the other hand, there is more interest from the appliationdomains in omputational geometry tehniques, and ompanies even start to spei�ally requireomputational geometry expertise.Aspets that play an important role in the algorithmi solutions to mathing are the repre-sentation, deomposition, approximation, and deformation of shapes, the transformation of oneshape to another, the measurement of shape similarity, and the organization of shapes into searhstrutures. In the following we give an overview of the state of the art in geometri shape mathingfrom the omputational geometry point of view. It should be noted though that the boundaryof the �eld of omputational geometry is not sharp, and onsidering a method a omputationalgeometry method or not is somewhat arbitrary.First we onsider properties of dissimilarity measures, then we list a number of problems inshape mathing, together with the best known result to solve them. We are primarily onernedwith patterns de�ned by �nite point sets, urves, and regions. Unless otherwise stated, patternsare a subset of R2 , and the underlying distanes are Eulidean.3 Dissimilarity MeasuresMany pattern mathing and reognition tehniques are based on a similarity measure betweenpatterns. A similarity measure is a funtion de�ned on pairs of patterns indiating the degree ofresemblane of the patterns. It is desirable that suh a similarity measure is a metri. Furthermore,6



a similarity measure should be invariant for the geometrial transformation group that orrespondsto the mathing problem. Below, we disuss a number of properties of metris, suh as invarianefor transformation groups.Let S be any set of objets. A metri on S is a funtion d : S�S ! R satisfying the followingthree onditions for all x; y; z 2 S [Cop68℄:(i) d(x; x) = 0;(ii) d(x; y) = 0 implies x = y;(iii) (triangle inequality) d(x; y) + d(x; z) � d(y; z).If a funtion satis�es only (i) and (iii), then it is alled a semimetri. Symmetry follows from(i) and (iii): d(y; z) � d(z; y) + d(z; z) = d(z; y), and d(z; y) � d(y; z) + d(y; y) = d(y; z), sod(y; z) = d(z; y). An alternative triangle inequality is the following:(iii0) d(x; y) + d(y + z) � d(x; z),but (i) and (iii0) do not imply symmetry:(iv0) d(x; y) = d(y; x)So only if d satis�es (iv0) in addition to (i) and (iii0), it is a semimetri. Any (semi)metri isnonnegative: d(x; y) + d(y; x) � d(x; x), so d(x; x) � 0.A set S with a �xed metri d is alled a metri spae. Given two elements x and y of S,the value d(x; y) is alled the distane between x and y. By identifying elements of S with zerodistane, any semimetri indues a metri on the resulting partition.A set of bijetions G in S is a transformation group if g�1h 2 G for all g; h 2 G. A (semi)metrid on a set S is said to be invariant for the transformation group G ating on S if d(g(x); g(y)) =d(x; y) for all g 2 G and x; y 2 S.The orbit of G passing through x 2 S is the set of images of x under G:G(x) = fg(x) j g 2 Gg:The orbits form a partition of S. The olletion of all orbits is alled the orbit set, denoted byS=G.The following theorem shows that a semimetri invariant under a transformation group resultsin a natural semimetri on the orbit set. Ruklidge [Ru96℄ used this priniple to de�ne a shapedistane based on the Hausdor� distane.Theorem 3.1 Let G be a transformation group for a set S; let d be a semimetri on S invariantfor G. Then ~d : S=G� S=G! R de�ned by~d(G(x); G(y)) = inffd(g(x); y) j g 2 Ggis a semimetri.Let P be a �xed olletion of subsets of R2 . Any element of P is alled a pattern. We allthe olletion P with a �xed metri d a metri pattern spae. A olletion of patterns P and atransformation groupG determine a family of shapes P=G. For a pattern A 2 P , the orrespondingshape equals the orbit G(A) = fg(A) j g 2 Gg:The olletion of all these orbits forms a shape spae. If d is invariant for G, then Theorem 3.1gives a semimetri ~d on the shape spae P=G.Shape mathing often involves omputing the similarity between two patterns, independent oftransformation. This is exatly what the shape metri ~d is good for. Given two patterns A and B,7



A B g(A)g(B)
Figure 5: AÆne invariane: d(A;B) = d(g(A); g(B)).it determines the greatest lower bound of all d(g(A); B) under transformations g 2 G, resulting ina transformation-independent distane between the orresponding shapes G(A) and G(B).A olletion of patterns P uniquely determines a maximal subgroup T of the homeomorphismsunder whih P is losed. (Homeomorphims are ontinuous, bijetive funtions having a ontinuousinverse.) The subgroup T onsists of all homeomorphism t suh that both the image t(A) and theinverse image t�1(A) are members of P for all patterns A 2 P .The metri pattern spae (X;P ; d) is invariant for a transformation g 2 T if d(g(A); g(B))equals d(A;B) for all A and B in P . The invariane group G of a metri pattern spae onsistsof all transformations in T for whih it is invariant. AÆne invariane is often desired in manypattern mathing and shape reognition tasks. Figure 5 shows patterns A and B in the Eulideanplane, and image patterns g(A) and g(B) under an aÆne transformation g. Invariane for aÆnetransformations makes the distane between two patterns independent of the hoie of oordinatesystem.Finding an aÆne invariant metri for patterns is not so diÆult. Indeed, a metri that isinvariant not only for aÆne transformations, but for general homeomorphisms is the disretemetri: d(A;B) = (0 if A equals B1 otherwiseHowever, this metri laks useful properties. For example, if a pattern A is only slightly distortedto form a pattern A0, the disrete distane d(A;A0) is already maximal.Therefore it makes sense to devise metris with spei� properties. A frequently used dissim-ilarity measure is the Hausdor� distane, whih is de�ned for arbitrary non-empty bounded andlosed sets A and B as the in�mum of the distane of the points in A to B and the points in B toA. This an be formulated as follows:d(A;B) = inff� > 0 j A � B� and B � A�gwhere A� denotes the union of all disks with radius � entered at a point in A. The Hausdor�distane is a metri. The invariane group for the Hausdor� distane onsists of isomorphisms(rigid motions and reetions). The Hausdor� distane is robust against small deformations, butit is sensitive to noise: a single outlier, a far away noise point, drastially inreases the Hausdor�distane, see Figure 6.In the next few setions, we give an overview of dissimilarity measures for more restritedpatterns: �nite point sets, urves, and regions. Then, in Setion 7 we will list a number ofrobustness properties for these measures.4 Finite point setsLet A and B be point sets of sizes n and m resp. Mathing the point sets means �nding aorrespondene between points of A and points of B. An optimal mathing minimizes somedissimilarity measure between the point sets. The orrespondene an be many-to-many, but alsoone-to-one, both have their appliations. Mathing has been studied extensively in a graph theory8



A Bd(A;B)
Figure 6: Hausdor� distane.setting, where the problem is to �nd a mathing in a graph (V;E) with verties V = A [ B, andgiven edges E with weights. Exploiting the geometri nature if the verties are points, and theweights are distanes between points, results in more eÆient algorithms, see [Vai89℄ for example.4.1 Bottlenek mathingLet A and B be two point sets of size n, and d(a; b) a distane between two points. The bottlenekdistane is the minimum over all 1 � 1 orrespondenes f between A and B of the maximumdistane d(a; f(a)). The results on bottlenek distane mentioned in this setion are due to [EI96℄.If d(a; b) is the Eulidean distane, the bottlenek distane between A and B an be omputedin time O(n1:5 logn). It is omputed using a tehnique alled parametri searh. This is usuallyonsidered an impratial method, although it has been implemented for other problems [SSS97℄.An alternative is to ompute an approximation d to the bottlenek distane d�. An approximatemathing between A and B with d the furthest mathed pair, suh that d� < d < (1 + �)d�, anbe omputed in time O(n1:5 logn). This algorithm makes use of an optimal approximate nearestneighbor algorithm [AMN+94℄.So far we have onsidered only the omputation problem, omputing the distane between twopoint sets. The deision problem for translations, deiding whether there exists a translation `suh that d(Q+ `; B) < �, an be done in O(n5 logn) time.Beause of the high degree in the omplexity, it is interesting to look at approximations witha fator �: d(Q + `; B) < (1 + �)d(Q + `�; T ). Finding suh a translation an be done in O(n2:5)time [Sh92℄.The optimization problem onsiders the omputation of the minimum distane under a groupof transformations. It �nds the optimal transformation f� suh that d(f(A); B) is minimized.For rigid motions (translations plus rotations, sometimes alled ongruenes), this an be foundin time O(n6 logn) [AMWW88℄. For translations only, it an be omputed in time O(n5 log2 n)[EI96℄.An approximation translation ` within fator two, d(A+`; B) � 2d(A+`�; B), an be obtainedby translating A suh that the lower left orner of the axis parallel bounding box (alled referenepoint) oinides with the one of B. An approximation with fator 1 + � < 2 an be obtained intime O(C(�; d)n1:5 logn) time, with C(�; d) a onstant depending on � and dimension d: C(�; d) =( 1+��2 )d log(1=�).Some variations on omputing the bottlenek distane between point sets are the following. IfA is a set of points, and B a set of segments, omputing the bottlenek distane an be done inO(n1:5+�) time. When the point are in Rd and the distane is L1, it an be omputed in timeO(n1:5 logd�1 n).Let A and B be two point sets of size m and n, and k a number not larger than m and n. Theproblem of �nding the smallest bottlenek distane over all one-to-one mathings between k pointsin A and k points in B an be omputed in O(m logm+ n1:5 logm) time. Typial appliation ofthis result is in situations where we searh a query pattern A in a larger target pattern B andhave to deal with noise points. 9



4.2 Minimum weight mathingThe minimum total distane (weight) is the minimum over all 1 � 1 orrespondenes f betweenA and B of the sum of the distanes d(a; f(a)). It an be omputed in O(n2+�) time [AES95℄.Here, the onstant � stands for a positive onstant whih an be hosen arbitrarily small with anappropriate hoie of other onstants of the algorithm. For the L1 distane, it an be omputedin time O(n2 log3 n) [Vai89℄.4.3 Uniform mathingThe `most uniform' distane is the minimum over all 1� 1 orrespondenes f between A and Bof the di�erene between the maximum and the minimum d(a; f(a)). The most uniform mathingis also alled balaned or fair mathing. The distane an be omputed in time O(n10=3 logn)[EK96℄. It is based on bathed range searhing, where the ranges are ongruent annuli.The problem of �nding the smallest uniform distane over all one-to-one mathings beteen kpoints in A and k points in B an be omputed with the same time omplexity.4.4 Minimum deviation mathingThe minimum deviation distane is the minimum over all 1� 1 orrespondenes f between A andB of the di�erene between the maximum and average distane d(a; f(a)). This an be omputedin time O(n10=3+�) [EK96℄.4.5 Hausdor� distaneIn many appliation, for example stereo mathing, not all points from A need to have a orre-sponding point in B, due to olusion and noise. Typially, the two point sets are of di�erent size,so that no one-to-one orrespondene exists between all points. In that ase, a dissimilarity mea-sure that is often used is the Hausdor� distane. The Hausdor� distane was de�ned in Setion 3for general sets. For �nite point sets, it an equivalently be de�ned as follows.The direted Hausdor� distane ~d(A;B) is de�ned as the maximum over all points in A of thedistanes to a point from B. The Hausdor� distane d(A;B) is the maximum of ~d(A;B) and~d(A;B): d(A;B) = maxf~d(A;B); ~d(A;B)g; ~d(A;B) = maxa2A minb2B d(a; b)with d(a; b) the underlying (Eulidean, say) distane.It an be omputed using Voronoi diagrams in time O((m+ n) log(m+ n)) [ABB95℄. The useof Voronoi diagrams for omputing the Hausdor� distane is explained in Setion 6.3 for mathingpolygons.Given two point sets A and B, the translation `� that minimizes the Hausdor� distane d(A+`; B) an be determined in time O(mn(logmn)2) when the underlying metri is L1 or L1 [CK92℄.This is done using a searh struture alled segments tree. For other Lp metris, p = 2; 3; : : : it anbe omputed in time O(mn(m + n)�(mn) log(m + n)) [HKS93℄. (�(n) is the inverse Akermannfuntion, a very slowly inreasing funtion.) This is done using the upper envelopes of Voronoisurfaes.Given a real value �, deiding if there is a rigid motion m (translation plus rotation) suh thatH(m(A); B) < � an be done in time O((m+n)m2n2 logmn) [CGH+97℄. Computing the optimalrigid motion, minimizing H(m(A); B) an be done in O((m + n)6 log(mn)) time [HKK92℄. Thisis done using dynami Voronoi diagrams.Given the high omplexities of these problems, it makes sense to look at approximations.Computing an approximate optimal Hausdor� distane under translation and rigid motion an bedone in time O((m + n) log(m+ n)) [AAR97℄. 10



Figure 7: Original images, extrated points, mathing with partial Hausdor� distane (lower left),and mathing with the aÆne invariant metri from [HV99b℄ (lower right).4.6 Transformation spae subdivisionMathing of �nite points, from images, under homotheties (translation and saling) is done bysubdividing the transformation spae by [HKR93℄. Rather than the Hausdor� distane itself, thepartial Hausdor� distane is used, whih is the maximum of the two direted partial Hausdor�distanes ~dk(A;B) and ~dk(B;A):dk(A;B) = maxf~dk(A;B); ~dk(B;A)g; ~dk(A;B) = kthq 2 A mint2B d(a; b)The partial Hausdor� distane is not a metri sine it fails the triangle inequality. The runningtime depends on the depth of subdivision of transformation spae.The subdivision of transformation spae is generalized to a general framework by [HV99b℄.Here the mathing an be done with respet to other transformations as well, for example, simi-larity (translation, rotation, and saling), or aÆne transformation (translation, rotation, saling,and shear). The method works for many dissimilarity measures, but we used a tehnique foronstruting metris using funtions fA; fB : R2 ! R de�ned on patterns A and B, and the aÆneinvariant metri de�ned by integrating the absolute di�erene of fA en fB . Figure 7 illustratesmathing with this metri, ompared to the partial Hausdor� distane.5 CurvesThe most diret way of representing urves is by their position funtion, de�ning all the positionsof the urve. A parametri urve A is de�ned in terms of a parameter: A(t) = (x(t); y(t)). Ingeneral, many parameterizations result in the same shape of the urve, but have di�erent derivativevetors along the urve [Vel92℄. A standard parameterization is by ar length along the urve;the ar length is usually denoted by s. Polygonal urves (polylines) are usually represented by11



� �Figure 8: Polygonal urve and turning funtion.their sequene of verties. An impliit de�nition of the urve, A : f(x; y) = 0, is less often used inmathing.Polylines from real world appliations often ontain many spurious verties, whih an beremoved by approximating the polygon. There are many heuristis for approximating polygonalurves, see e.g. [Ros97℄ for a omparison. Two methods of optimal approximation are the following:� Given a polyline A and a number k, onstrut an approximation polyline Ak of k verties,minimizing the approximation error, or dissimilarity, d(A;Ak).� Given a polyline and an error bound �, onstrut an approximation polyline A� with dissim-ilarity d(A;A�) < �, minimizing the number of verties.Both approximations an be omputed in O(n2 logn) time for various error measures [II88℄. How-ever, these optimal approximations are not suitable for onstruting a hierarhy of approximations,in the sense that eah segment at one level may be re�ned at the next level of approximation.Approximating polygons at various levels allows the hierarhial proessing of urves [Vel98℄.5.1 Turning funtionRepresentations other than the position funtion are also useful in mathing. From the positionfuntion, other representations an be derived, suh as the tangent, aeleration, tangent angle,umulative angle, periodi umulative angle, and the urvature funtions [vO92℄.The umulative angle funtion, or turning funtion, �A(s) of a polygon A gives the anglebetween the ounterlokwise tangent and the x-axis as a funtion of the ar length s. �A(s)keeps trak of the turning that takes plae, inreasing with left hand turns, and dereasing withright hand turns. Clearly, this funtion is invariant under translation of the polyline. Rotating apolyline over an angle � results in a vertial shift of the funtion with an amount �.For polylines, the turning funtion is a pieewise onstant funtion, inreasing or dereasingat the verties, and onstant between two onseutive verties, see �gure 8.Mathing polylines based on the turning funtions an be done as follows. For simpliity, �rstassume that the two urves have the same length. The Lp metri on funtion spaes, applied to�A and �B, gives a dissimilarity measure on A and B:dA;B = �Z j�A(s)��B(s)jp ds�1=pMinimizing this dissimilarity under rotation �, amounts to minimizing d(A;B) = R j�A(s) ��B(s) + �jp ds. For p = 2, the minimum is obtained for � = R �B(s) ds� R �A(s) ds.In [VV99℄, for the purpose of retrieving hieroglyphi shapes, the polygonal urves do not havethe same length, so that partial mathing an be performed. In that ase we an move the startingpoint of the shorter one along the longer one, and onsider only the turning funtion where the arlengths overlap. This is a variation of the algorithms for mathing losed polygons with respetto the turning funtion, whih an be done in O(mn log(mn)) time [ACH+91℄, see Setion 6.Partial mathing under saling, in addition to rotation and rotation, is more involved. This anbe done in time O(m2n2), see [CG97℄. The dissimilarity balanes the length of a math against12
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1Figure 9: A urve and its signature funtion.the squared error. Given two mathes with the same squared error, the math involving the longerpart of the polylines has a better dissimilarity. The dissimilarity measure is a funtion of the sale,rotation, and the shift of one polyline along the other. An analyti formula of the dissimilarityin terms of sale and shift yields a searh problem in sale-shift plane. This spae is divided intoregions. A minimum of the dissimilarity is found by a line sweep over the plane.5.2 Signature funtionA less disriminative funtion is the so-alled signature funtion. At every point along the urve,the signature funtion � value is the ar length of the urve to the left or on the tangent line atthat point, see Figure 9. It is invariant under similarity: ombinations of translation, rotation,and saling. For onvex urves, the signature funtion is one everywhere, beause at every point,the whole urve lies to the left of the tangent. For a single polyline urve, the signature funtionan be omputed in time O(n2) [O'R85℄.For polylines, dissimilarity measures an be used that are based on `time warps' of sequenesof elements (verties or segments), pairing elements of A to elements of B. The pairing need notbe one-to-one: the pairing of element i of A to element j of B, may be followed by a pairing of ito j+1, i+1 to j, or i+1 to j+1. Using dynami programming, this takes time O(nm) [Kru83℄.5.3 AÆne ar-lengthInstead of turning funtions, aÆne invariant representations of urves may be used as a basis forshape mathing. An example of suh a representation is aÆne ar-length. While turning funtionsare invariant only under similarity transformations the normalized aÆne ar-length is invariantfor all aÆne transformations. Huttenloher and Kedem [HK90℄ use the one-dimensional Hausdor�distane to ompare aÆne ar-length desriptions of urves.Let A : [0; 1℄! R be a two times ontinuously di�erentiable urve, and let A0 and A00 denotethe �rst and seond order derivates, respetively. The aÆne ar length is the funtion � : R ! Rgiven by �(t) = Z t0 jdet(A0(x); A00(x))j 13 dx:The normalised ar-length is de�ned as follows:��(t) = �(t)�(1) :Instead of these de�nitions, Huttenloher and Kedem use a disretized version of aÆne ar-length to represent the boundary of a simple polygon. This disretized representation is a �niteset of numbers between 0 and 1, one number for eah boundary vertex. Two simple polygons areequal if the respetive disretized ar-lengths are equal up to translation modulo 1. This problem13



an be solved in a perturbation-robust manner by minimising the Hausdor� distane between thetwo representations (seen as one-dimensional �nite point sets). The latter problem an be solvedin O(mn log(mn)) time.5.4 Reetion metriAÆne-ar length an be used to de�ne aÆne invariant similarity measures on urves. However,there is no straightforward generalization of it to patterns that onsist of more than one onnetedomponent. The reetion metri ([HV99a℄) is an aÆne-invariant metri that is de�ned on �niteunions of urves in the plane.The reetion metri is de�ned as follows. First, unions of urves are onverted into real-valued funtions on the plane. Then, these funtions are ompared using integration, resulting ina similarity measure for the orresponding patterns.The funtions are formed as follows, for eah �nite union of urves A. For eah x 2 Rn , thevisibility star V xA is de�ned as the union of open line segments onneting points of A that arevisible from x: V xA =[fxa j a 2 A and A \ xa = ? g:The reetion star RxA is de�ned by interseting V xA with its reetion in x:RxA = fx+ v 2 R2 j x� v 2 V xA and x+ v 2 V xA g:The funtion �A : R2 ! R is the area of the reetion star in eah point:�A(x) = area(RxA):Observe that for points x outside the onvex hull of A, this area is always zero. The reetionmetri between patterns A and B de�nes a normalised di�erene of the orresponding funtions�A and �B : d(A;B) = RR2 j�A(x)� �B(x)j dxRR2max(�A(x); �B(x)) dx :From the de�nition follows that the reetion metri is invariant under all aÆne transforma-tions. In ontrast with single-urve patterns, this metri is de�ned also for patterns onsisting ofmultiple urves. In addition, the reetion metri is deformation, blur, rak, and noise robust.Here, we fous at the omputation of the reetion metri for �nite unions of line segmentsin the plane. First, ompute partitions of the plane in whih the ombinatorial struture of thereetion star is onstant. Using the latter partition, the reetion distane an be omputed inO(rI(m + n)) time for two separate olletions of segments with m and n segments, where r isthe omplexity of the overlay of two partitions, and I(k) denotes the time needed to integrate theabsolute value of quotients of polynomials with at most degree k over a triangle. Assuming I(k)is linear in k, the overall omplexity amounts to O(r(m + n)). The omplexity of the overlay, r,is O(m4 + n4).The reetion metri an be generalised to �nite unions of (d� 1)-dimensional hyper-surfaesin d dimensions. The generalisation onsists of replaing the two-dimensional area by the d-dimensional volume.5.5 Hausdor� distaneThe Hausdor� distane is not only de�ned for �nite point sets, but for any two ompat sets.Speial ases are sets of polylines. The results for polylines are the same as for polygons, seeSetion 6.3. 14



H FFigure 10: Hausdor� (H) and Fr�ehet (F) distane between two urves.5.6 Fr�ehet distaneThe Hausdor� distane is often not appropriate to measure the dissimilarity between urves. Forall points on A, the distane to the losest point on B may be small, but if we walk forwardalong urves A and B simultaneously, and measure the distane between orresponding points,the maximum of these distanes may be larger, see Figure 10. This is what is alled the Fr�ehetdistane. More formerly, let A and B be two parameterized urves A(�(t)) and B(�(t)), and lettheir parameterizations � and � be ontinuous funtions of the same parameter t 2 [0; 1℄, suh that�(0) = �(0) = 0, and �(1) = �(1) = 1. The Fr�ehet distane is the minimum over all monotoneinreasing parameterizations �(t) and �(t) of the maximal distane d(A(�(t)); B(�(t))), t 2 [0; 1℄.[AG95℄ onsiders the omputation of the Fr�ehet distane for the speial ase of polylines.Deiding whether the Fr�ehet distane is smaller than a given onstant, an be done in timeO(mn).Based on this result, and the `parametri searh' tehnique, it is derived that the omputationof the Fr�ehet distane an be done in time O(mn log(mn)). Although the algorithm has lowasymptoti omplexity, it is not really pratial. The parametri searh tehnique used heremakes use of a sorting network with very high onstants in the running time. A simpler sortingalgorithm leads to an asymptoti running time of O(mn(logmn)3). Still, the parametri searh isnot easy to implement. A simpler algorithm, whih runs in time O(mn(m + n) log(mn)) is givenin [God91℄.A variation of the Fr�ehet distane is obtained by dropping the monotiity ondition of theparameterization. The resulting Fr�ehet distane d(A;B) is a semimetri: zero distane need notmean that the objets are the same, see Setion 3. For this the deision problem, deiding whetherd(A;B) < � for a given �, an be deided in time O(mn). The atual distane an be omputedin time O(mn log(mn)).Another variation is to onsider partial mathing: �nding the part of one urve to whih theother has the smallest Fr�ehet distane. The orresponding deision problem an be solved in timeO(mn log(mn)), the omputation problem in time O(mn(log(mn))2).5.7 Size funtionRelatively new are so-alled size funtions [VU96℄. Size funtions an be de�ned for arbitraryplanar graphs and a `measuring funtion' D. An example of suh a measuring funtion is thedistane from eah pattern point to the enter of mass. The size funtion sD(x; y) is then de�nedas the number of onneted omponents of the set of points with D � y that have at least one pointwith D � x. Size funtions do not uniquely represent a shape, but lasses of shapes, dependingon the measuring funtion.5.8 Pixel hainsGiven two sets of pixel hains, the root mean square of the distanes from one set of pixels tothe other, an be omputed with the relatively eÆient hierarhial hamfer mathing algorithm,whih works on the basis of the distane transform and the hamfer distane [Bor88℄.15



s�A(s)�B(s)
Figure 11: Retangles enlosed by �A(s), �B(s), and dotted lines are used for evaluation ofdissimilarity.6 RegionsAs mentioned in Setion 2.2.1, normalization of regions, �lled ontours, is often done using alge-brai moments. For the speial ase of polygons, this an be done in time linear in the number ofverties [Ste96℄.A representation that has proven to be relevant in human vision is the medial axis, produinga skeleton and a width value at eah point on the skeleton (the so-alled quenh funtion). Forpolygonal ontours, the medial axis and the quenh funtion an be omputed in time linear in thenumber of verties [CSW95℄. For pixel hain ontours, this an be omputed using the distanetransform [Bor86℄.The dissimilarity of ontours an be based on sample points along the ontour urve, the wholeontour urve, or the enlosed area. For example, Fourier desriptors are based on samples of theontour. A number of methods based on the ontour urve and the area are mentioned below.6.1 Turning funtionAs already mentioned in Setion 5.1, the turning funtion is also appliable for mathing regions,and was used by [ACH+91℄ for mathing polygons under translation, rotation, and saling. Forthe speial ase of polygons, mathing based on turning funtions an be done as follows. Firstresale both polygons so that the perimeter has length one. The Lp metri on funtion spaes,applied to �A and �B , gives a dissimilarity measure on A and B:dA;B = �Z j�A(s)��B(s)jp ds�1=pIf the starting point of the ar length parameter of �A(s) is shifted by an amount t, the newfuntion is �A(s+t). If the polygon is rotated by an angle �, the new funtion is �A(s)+�. Makingthe dissimilarity invariant for the starting point of the ar length parameter, and minimizing underrotation �, amounts to minimizingdA;B(t; �) = �Z j�A(s+ t)��B(s) + �jp ds�1=pfor t and �.For any �xed t and p = 2, dA;B(t; �) is minimal for � = R �B(s) ds � R �A(s) ds � 2�t. Forpolygons, the turning funtions are pieewise onstant step funtions. Therefore dA;B(t; �) an beevaluated as the sum of O(m+ n) terms orresponding to the areas between the dotted lines, see�gure 11. The minimum dA;B(t; �) is obtained when two steps of the step funtions oinide, ofwhih are O(mn) possible solutions. This leads to a straightforward O(mn(m + n)) algorithm.This an be sped up by inremental evaluation of dA;B(t; �) for all the O(mn) possible solutions,giving an algorithm of time omplexity O(mn log(mn)) [ACH+91℄.It should be noted that nonuniform noise in the form of perturbation of verties unevenlyspread along the polygon is problemati for this distane funtion.16
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Figure 12: Polygon and its Voronoi diagram.6.2 Fr�ehet distaneParameterized ontours are urves where the starting point and ending point are the same. How-ever, the starting and ending point ould as well lie somewhere else on the ontour, withouthanging the shape of the ontour urve. Deiding whether the Fr�ehet distane of two ontours issmaller than �, irrespetive the starting point, an done in time O(mn log(mn)). The orrespond-ing omputation problem, omputing the Fr�ehet distane, an be solved in time O(mn(log(mn))2)[AG95℄.For onvex ontours urves, the Fr�ehet distane is equal to the Hausdor� distane, whih anbe omputed in time O(mn log(mn)) [ABGW90℄.6.3 Hausdor� distaneGiven two polygons A and B, the direted Hausdor� distane from A to B an be omputed usingthe Voronoi diagram of B, whih assigns to eah vertex and edge of A a region of points that lieloser to that vertex or edge than to any other, see Figure 12. If the edges in the Voronoi diagramseparate regions of two edges (e.g. l(e1; e2)), or two verties (e.g. l(v1; v3)), or the regions of anedge and its endpoint vertex (e.g. l(v1; e1)), then they are line segments. The Voronoi edge is aparaboli segment if it separates regions of a polygon edge and a vertex that not its endpoint (e.g.p(v1; e2)). The Voronoi diagram of B has O(n) edges, and it an be omputed in time O(n logn).To ompute the direted Hausdor� distane from A to B, let us onsider the part of B thatfalls within a single region of the Voronoi diagram of A, for example the thik line segments inFigure 13. Moving along the thik polyline, the distane to B �rst dereases, than inreases, so themaximal distane is obtained at the intersetion of the thik segments with the Voronoi diagram.In general, the maximal distane is obtained at a vertex of A or at an intersetion point of Awith the Voronoi diagram. Note that there an be multiple intersetion points on an edge of theVoronoi diagram, and the largest distane is obtained at the intersetion with the largest or thesmallest oordinates; there are O(m+n) of these points. At those points of A where the maximaldistane an our, we have to atually ompute to distane to B, and take the maximum. Thisan be done in time O((m+ n) log(m+ n)) by a plane sweep algorithm, see [ABB95℄ for details.Given two polygons, the minimal Hausdor� distane under translation an be omputed intime O((mn)2(log(m + n))3) using parametri searh [AST94℄, or simpler in time O((mn)3(m+n) log(m+ n)) [ABB92℄.Given the high omplexities, it makes sense to implement approximation algorithms to �nda transformation that gives a Hausdor� distane that is at most a onstant times the minimumdistane. For mathing under translations, this an be done the following way. Let `A be thelower left orner of the axis parallel bounding box of A, i.e. it has the smallest x-oordinate of allpoints in A, and also, independently, the smallest y-oordinate of all points in A. Suppose that the17
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Figure 13: Overlay of polygon A with the Voronoi diagram of B.optimal translation of A would be f , so that the Hausdor� distane dH = d(f(A); B) is minimal.Then the distane between `A and `B annot be larger than dHp2. So if g is the translation thatmaps `A onto `B , then the Hausdor� distane d(g(A); B) is at most a fator (1 +p2) times theoptimal dH [ABB95℄. Determining g an obviously be done in time O(m+n), but omputing theresulting distane still takes O(m+ n) log(m+ n), as above.The minimal Hausdor� distane under rigid motions (not only translations, but also rotations)an be omputed in time O((mn)4(m + n) log(m + n)) [ABB92℄. So again, an approximationalgorithm is interesting. Let kA be the entroid of the edges of the onvex hull of A. Supposethat the optimal rigid motion of A would be f , so that the Hausdor� distane dH = d(f(A); B) isminimal. There are many rigid motions of A that map kA onto kB . If g is the one that gives thesmallest Hausdor� distane, then the Hausdor� distane d(g(A); B) is at most a fator (4� + 3)times the optimal dH . For details about how to determine g, see [ABB95℄. The time omplexity isO((mn) log(mn) log�(mn)). (The notation O(log� n) means inffkj log log (k times): : : logn � 1g).In words, it is the number of times that log has be applied to get down from n to below one. Forexample log� 24294967296 is only 6.)6.4 Area of overlap and symmetri di�ereneTwo dissimilarity measures that are based on the area enlosed by the polygons rather than theboundaries, are the area of overlap and the area of symmetri di�erene. For two ompat sets Aand B, the area of overlap is de�ned as area(A\B), the area of symmetri di�erene is de�ned asarea((A�B)[(B�A)), see �gure 14. These dissimilarity measure is a metri. The invariane groupis the lass of di�eomorphisms with unit Jaobi-determinant. For translations, the transformationthat maximizes the area overlap also minimizes the area of symmetri di�erene.Given two polygons, omputing the area of overlap an be done by omputing the arrangementof two simple polygons, the ombinatorial struture of point, edges, and faets resulting fromoverlaying the two polygons. This an be done in time O(n log� n + C), with C the omplexityof the arrangement (number of verties, edges, and faets). After preproessing, taking O((mn)2)time, the area of overlap an be omputed more eÆiently, even for any translation of one polygonwith respet to the other, in time O(log(m+ n)) [MW96℄.If the polygons are onvex, omputing the smallest area of overlay under translations an bedone in time O((m + n) log(m + n)) [dBDvK+96℄. It turns out that translating the polygons sothat their entroids oinide gives an overlap of at least 9/25 of the optimal solution [dBDvK+96℄.Translating onvex polygons so that their entroids oinide also gives an approximate solutionfor the symmetri di�erene, whih is at most 11/3 of the optimal solution under translations[AFRW96℄. This also holds for a set of transformations F other than translations, if the following18
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Figure 14: Area of overlap and symmetri di�erene.
Figure 15: Disretization e�ets: deformation, blur, raks, and noise.holds: the entroid of A, (A), is equivariant under the transformations, i.e. (f(A)) = f((A))for all f in F , and F is losed under omposition with translation.The omputation of the entroids an be done in linear time by triangulating eah polygon,determining the entroids and areas of the triangles, and then determining the total entroids asthe weighted sum of the triangle entroids. This takes time linear in the number of verties.Normalizing the area of overlap and symmetri di�erene by the area of the union of the twopolygons makes these measures invariant under a larger transformation group, namely the groupof all di�eomorphisms f(x) with a Jaobi determinant that is onstant over all points x 2 R2[HV99a℄.7 RobustnessWe have alread seen in Setion 3 that the Hausdor� distane is not robust against noise. Thereare other types of distortions that an also have its e�et on the measure of dissimilarity betweentwo patterns. Figure 15 shows the e�et disretization an have on a pattern, suh as deformation,blurring, as well as the formation of raks and noise. If we have a robust, invariant metri onpatterns, then we an perform shape mathing in a robust manner by using the shape metri.Below, we formalize four types of robustness. We introdue four axioms expressing robustnessfor what we all `deformation', `blur', `raks' and `noise'. Deformation robustness says that eahpoint in a pattern may be moved a little bit without seriously a�eting the value of the metri.Blur robustness says that new points may be added lose to the original pattern. Crak robustnesssays that omponents of patterns may be broken up as long as the raks are relatively thin. Noiserobustness says that new small parts may be added to a pattern.Let P be a olletion of patterns in R2 , and let T be the maximal group of homeomorphismsunder whih P is losed. A metri d on P is alled deformation robust if it satis�es the followingaxiom:Axiom 7.1 For eah A 2 P and � > 0, there is a Æ > 0 suh that kx� t(x)k < Æ for all x 2 bd(A)implies d(A; t(A)) < � for all t 2 T . 19



bd(t(A)) bd(A)Figure 16: Deformation robust. U bd(A)bd(B)� bd(A)Figure 17: Blur robust.Uxbd(A)
Figure 18: Crak robust. Uxbd(A)Figure 19: Noise robust.Deformation robustness is equivalent to saying that for eah pattern A 2 P , the map t 7! t(A)with domain T and range P is ontinuous. Figure 16 shows the image of A under a transformationwith a small Æ in the sense of Axiom 7.1.In the following, the boundary of a pattern is denoted with bd(A). We all a metri patternspae blur robust if the following holds:Axiom 7.2 For eah A 2 P and � > 0, an open neighborhood U of bd(A) exists, suh thatd(A;B) < � for all B 2 P satisfying B � U = A� U and bd(A) � bd(B).The axiom says that additions lose to the boundary of A do not ause disontinuities. Figure 17shows a neighborhood U of A in whih parts of B our that are not in A.We say that a metri pattern spae is rak robust if the next axiom holds:Axiom 7.3 For eah A 2 P, eah \rak" x 2 bd(A), and � > 0, an open neighborhood U of xexists suh that A� U = B � U implies d(A;B) < � for all B 2 P.The axiom says that applying hanges to A within a small enough neighborhood of a boundarypoint of A results in a pattern B lose to A in pattern spae. Whether the onnetedness ispreserved does not matter.If the following axiom is satis�ed, we all a metri pattern spae noise robust:Axiom 7.4 For eah A 2 P, x 2 R2 � bd(A), and � > 0, an open neighborhood U of x exists suhthat B � U = A� U implies d(A;B) < � for all B 2 P.This axiom says that hanges in patterns do not ause disontinuities in pattern distane, providedthe hanges happen within small regions. By means of the triangle inequality, we obtain anequivalent axiom when neighborhoods of �nite point sets instead of singletons are onsidered.Figure 19 shows a pattern A and a point x. Addition of noise B�A within a neighborhood Uof x results in a new pattern B. Axiom 7.4 says that the distane between A and B an be madesmaller by making U smaller.All these robustness axioms an also be formulated for patterns in higher dimensions. For amore detailed desription, see [HV99℄.For the dissimilarity measures treated in the previous setions, table 1 lists the invarianegroup, and whih robustness axioms are satis�ed. For a more detailed treatment, see [HV99a℄.20



distane pattern inv. group deform blur rak noisebottlenek �nite pointsets iso yes n.a. n.a. n.a.minimumweight �nite pointsets iso yes n.a. n.a. n.a.most uniform �nite pointsets iso yes n.a. n.a. n.a.minimumdeviation �nite pointsets iso yes n.a. n.a. n.a.Fr�ehet urves iso yes n.a. n.a. n.a.turning fun +Lp urves sim yes n.a. n.a. n.a.signature fun.+ warp urves sim yes n.a. n.a. n.a.norm. a�. arlength + Hausd. urves a� no n.a. n.a. n.a.reetion sets of urves a� yes yes yes yesnorm. areasymm. di�. regions di�-j yes yes yes yesnorm. areaoverlap regions di�-j yes yes yes yesHausdor� non-emptyompat sets iso yes yes yes nodisrete point sets hom no no no noTable 1: Patterns, metris, invariane group, and robustness. `Iso' means the group of isomor-phisms, `sim' means similarities, `di�-j' means di�eomorphisms with onstant Jaobian deter-minant. `N.a.' formally means that the axiom is satis�ed, but that this is meaningless for thatpattern and distane (not appliable).The distane measure that is most suitable for any partiular appliation totally depends on theappliation at hand.8 SoftwareMost of these results are so reent that almost no implementations are available. Code for mathingpoint sets under the Hausdor� distane is made available via http://www3.s.ornell.edu/dph/dos/. Code for polygon similarity testing using turning angles is available via the Stony BrookAlgorithm Repository, see http://www.s.sunysb.edu/~algorith/files/shape-similarity.shtml. Software for size funtions and mathing with size funtions is available via http://www.dm.unibo.it/~ferri/vismath/sizefts/sizehom2.htm. No mathing software is available viaNetlib (http://netlib.bell-labs.om/netlib/index.html), and no mathing software at allis mentioned in the overview of omputational geometry software of [Ame97℄.For implementing geometri algorithms, CGAL, the Computational Geometry Algorithms Li-brary is available via http://www.s.uu.nl/CGAL/. The library provides geometri primitivessuh as points, lines, and triangles, basi operations suh as distane and intersetion alulations,as well as higher level data strutures and algorithms suh as triangulation, onvex hull, planarmap, et. 21
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