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tionLarge image databases are used in an extraordinary number of multimedia appli
ations in �eldssu
h as entertainment, business, art, engineering, and s
ien
e. Retrieving images by their 
ontent,as opposed to external features, has be
ome an important operation. A fundamental ingredient for
ontent-based image retrieval is the te
hnique used for 
omparing images. There are two generalmethods for image 
omparison: intensity-based (
olor and texture) and geometry-based (shape).A re
ent user survey about 
ognition 
ognition aspe
ts of image retrieval shows that users aremore interested in retrieval by shape than by 
olor and texture [SdLV99℄. However, retrieval byshape is still 
onsidered one of the most diÆ
ult aspe
ts of 
ontent-based sear
h. Indeed, systemssu
h as IBM's QBIC, Query By Image Content [QBI℄, perhaps one of the most advan
ed imageretrieval systems to date, is relatively su

essful in retrieving by 
olor and texture, but performspoorly when sear
hing on shape. A similar behavior shows the new Alta Vista photo �nder [AVP℄.Shape mat
hing is a 
entral problem in visual information systems, 
omputer vision, patternre
ognition, and roboti
s. Appli
ations of shape mat
hing in
lude industrial inspe
tion, �ngerprintmat
hing, and 
ontent-based image retrieval. Figures 1, 2, and 3 illustrate a few typi
al problemsthat need to be solved:1. Figure 1 illustrates an appli
ation in agri
ultural inspe
tion. A typi
al problem here is to �nda mat
hing transformation. Based on shape 
hara
teristi
s, we 
an �nd the transformationthat mat
hes one pie
e of fruit with another.2. Figure 2 shows a point set mat
hing appli
ation in �ngerprint identi�
ation. After extra
tionof featuring points, two point sets must be mat
hed. The diÆ
ulty here is that there istypi
ally no one to one 
orresponden
e between the two point sets. The mat
hing te
hniqueshould be robust against noise and o

lusion.3. Figure 3 shows an appli
ation in multimedia retrieval. Given the query shape at the left,the task is to �nd all pi
tures that 
ontain similar shapes. The typi
al problem is that onlypie
es of the query shape appear in only parts of some of the database pi
tures.This paper deals with the mat
hing of geometri
 shapes, with an emphasis on te
hniques from
omputational geometry. We are 
on
erned with geometri
 patterns su
h as �nite point sets,
urves, and regions. For an overview of more general shape analysis, see [Lon98℄.Mat
hing deals with transforming a pattern, and measuring the resemblan
e with anotherpattern using some dissimilarity measure. Pattern mat
hing and shape mat
hing are 
ommonlyused inter
hangeably. However, more formally, the shape of a pattern is the pattern under alltransformations in a transformation group. The mat
hing problem is studied in various forms.Given two patterns and a dissimilarity measure:� (
omputation problem) 
ompute the dissimilarity between the two patterns,� (de
ision problem) for a given threshold, de
ide whether the dissimilarity between two pat-terns is smaller than the threshold, 1



Figure 1: Shape mat
hing in fruit inspe
tion.� (de
ision problem) for a given threshold, de
ide whether there exists a transformation su
hthat the dissimilarity between the transformed pattern and the other pattern is smaller thanthe threshold,� (optimization problem) �nd the transformation that minimizes the dissimilarity between thetransformed pattern and the other pattern.Sometimes the time 
omplexities to solve these problems are rather high, so that it makessense to devise approximation algorithms that �nd an approximation:� Given two patterns, �nd a transformation that gives a dissimilarity between the two patternsthat is within a spe
i�ed fa
tor from the minimum dissimilarity.There are several variations on these problems. A pattern 
an be 
ompared to a single patternor to many other patterns, in whi
h 
ase an indexing stru
ture is needed to speed up the 
om-parisons. Another variation is to take artefa
ts su
h as noise into a

ount, or to perform partialmat
hing, i.e. �nding a �nding within a larger pattern.There are various ways to approa
h the shape mat
hing problem. In this arti
le we fo
us onmethods from 
omputational geometry. Computational geometry is the subarea of algorithms de-sign that deals with the design and analysis of algorithms for geometri
 problems involving obje
tslike points, lines, polygons, and polyhedra. The standard approa
h taken in 
omputational geom-etry is the development of exa
t, provably 
orre
t and eÆ
ient solutions to geometri
 problems.Aspe
ts that play a 
ru
ial role in the algorithmi
 solutions to mat
hing are the representation ofpatterns, the transformation group, and the dissimilarity measure.

Figure 2: Fingerprint mat
hing.
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Figure 3: Query hieroglyph (left), and hieroglyphs retrieved from database, from [VV99℄.2 Approa
hesMat
hing has been approa
hed in a number of ways, in
luding tree pruning [Ume93℄, the gener-alized Hough transform or pose 
lustering [Bal81℄ [Sto87℄, geometri
 hashing [WR97℄, the align-ment method [HU87℄, statisti
s [Sma96℄, deformable templates [SP95℄, relaxation labeling [RR80℄,Fourier des
riptors [Lon98℄, wavelet transform [JFS95℄, 
urvature s
ale spa
e [MAK96℄, and neu-ral networks [Gol95℄. Without being 
omplete, in the following subse
tions we will des
ribe andgroup a number of these methods together.2.1 Global image transformsThere is a number of te
hniques that transform the image from 
olor information in the spatialdomain to 
olor variation information in the frequen
y domain. Although su
h approa
hes do notexpli
itly en
ode shape for mat
hing and retrieval, they represent 
olor or intensity transitions inthe image, whi
h typi
ally o

urs at obje
t boundaries.A spe
i�
 
lass of image transformations are wavelet-based transforms. Wavelets are fun
tionsthat de
ompose signals (here two-dimensional 
olor signals) into di�erent frequen
y 
omponents.Ea
h 
omponent is then analyzed at a resolution 
orresponding its s
ale. Be
ause the originalimage 
an be represented as a linear 
ombination of wavelet fun
tions, similar to the Fouriertransform, we 
an pro
ess the images by the wavelet 
oeÆ
ients. By trun
ating the 
oeÆ
ientsbelow a threshold, image data 
an be sparsely represented, at the 
ost of loss of detail. A set ofsu
h 
oeÆ
ients 
an be used as a feature ve
tor for image mat
hing.The wavelet transform 
an be done with di�erent basis fun
tions. The Haar basis fun
tions,used by Ja
obs et al. [JFS95℄, do not perform well when the query image 
onsist of a smalltranslation of the target image. This problem is less in the approa
h of Wang et al. usingDaube
hies basis fun
tions [WWFW97℄.For the purpose of shape mat
hing, a drawba
k of global image transforms is that shapeinformation is not expli
itly represented, and that the whole image is en
oded, in
luding 
olorand texture information that need not indi
ate obje
t transitions. As a result, it is not possibleto measure how mu
h two di�erent images are similar in terms of shape. Also, due to the globalnature, it is not possible to mat
h a query shape with only a part of an image.2.2 Global Obje
t MethodsBelow, we mention a few methods that work on an obje
t as a whole, i.e. a 
omplete obje
t area or
ontour. An important drawba
k of all these methods is that 
omplete obje
ts in images must be
learly segmented, whi
h is in itself an ill-posed problem. Typi
ally the result of a segmentationpro
ess is a partitioning into regions that need not 
orrespond to whole obje
ts. However, theglobal obje
t methods work only for whole obje
ts. In general, su
h methods are not robustagainst noise and o

lusions. 3



2.2.1 MomentsWhen a 
omplete obje
t in an image has been identi�ed, it 
an be des
ribed by a set of momentsmp;q . The (p; q)-moment of an obje
t O � R2 is given bymp;q = Z(x;y)2O xpyq dx dyor, in terms of pixels in a binary [1; n℄� [1;m℄ image f :nXx=1 mXy=1xpyqf(x; y)where the ba
kground pixels have value zero, and the obje
t pixels have value one. The in�nitesequen
e of moments, p; q = 0; 1; : : : , uniquely determines the shape, and vi
e verse. Variationsare des
ribed in [KH90℄ and [Che93℄.Based on su
h moments, a number of fun
tions, moment invariants, 
an be de�ned that areinvariant under 
ertain transformations su
h as translation, s
aling, and rotation. Using only alimited number of low order moment invariants, the less 
riti
al and noisy high order momentsare dis
arded. A number of su
h moment invariants 
an be put into a feature ve
tor, whi
h 
anbe used for mat
hing. Global obje
t features su
h as area, 
ir
ularity, e

entri
ity, 
ompa
tness,major axis orientation, Euler number, 
on
avity tree, shape numbers, and algebrai
 moments 
anall be used for shape des
ription [BB82℄, [PR92℄. A number of su
h features are for example usedby the QBIC system [NBE+93℄.2.2.2 Modal mat
hingRather than working with the area of an obje
t, the boundary 
an be used instead. Samples ofthe boundary 
an be des
ribed with Fourier des
riptors, the 
oeÆ
ients of the dis
rete Fouriertransform [vO92℄.Another form of shape de
omposition is the de
omposition into an ordered set of eigenve
tors,also 
alled prin
ipal 
omponents. Again, the noisy high order 
omponents 
an be dis
arded, usingonly the most robust 
omponents. The idea is to 
onsider n points on the boundary of an obje
t,and to de�ne a matrix D su
h that element Dij determines how boundary points i and j of theobje
t intera
t, typi
ally involving the distan
e between points i and j.The eigenve
tors ei of D, satisfying Dei = �ei, i = 1; : : : ; n, are the modes of D, also 
alledeigenshapes. To mat
h two shapes, take the eigenve
tors ei of the query obje
t, and the eigen-ve
tors e0j of the target obje
t, and 
ompute a mismat
h value m(ei; e0j). For simpli
ity, let usassume that the eigenve
tors have the same length. For a �xed i = i0, determine the value j0 ofj for whi
h m(ei0 ; e0j) is minimal. If the value of i for whi
h m(ei; e0j0) is minimal is equal to i0,then point i of the query and point j of the target mat
h ea
h other. See for example [GT98℄ and[S
l97℄ for variations on this basi
 te
hnique of modal mat
hing.2.2.3 Curvature s
ale spa
eAnother approa
h is the use of a s
ale spa
e representation of the 
urvature of the 
ontour ofobje
ts. Let the 
ontour C be parameterized by ar
-length s: C(s) = (x(s); y(s)). The 
oordinatefun
tions of C are 
onvolved with a Gaussian kernel �� of width �:x�(s) = Z x(s)��(t� s) dt ��(t) = 1p2��2 e� t22�2and the same for y(s). With in
reasing value of �, the resulting 
ontour gets smoother, see�gure 2.2.3, and the number of zero 
rossings of the 
urvature along it de
reases, until �nally the
ontour is 
onvex and the 
urvature is positive. 4



Figure 4: Contour evolution redu
ing 
urvature 
hanges, seehttp://www.ee.surrey.a
.uk/Resear
h/VSSP/imagedb/demo.html.For 
ontinuously in
reasing �, the positions of the 
urvature zero-
rossings 
ontinuously movealong the 
ontour, until two su
h positions meet and annihilate. Mat
hing of two obje
ts 
an bedone by mat
hing points of annihilation in the s; � plane [MAK96℄.Another way of redu
ing 
urvature 
hanges is based on the turning angle fun
tion (see Se
-tion 5.1), or tangent spa
e representation [LL99℄.2.3 Voting s
hemesThe voting s
hemes dis
ussed here generally work on so-
alled interest points. For the purpose ofvisual information systems, su
h points are for example 
orner points dete
ted in images.Geometri
 hashing [LW88, WR97℄ is a method that determines if there is a transformed subsetof the query point set that mat
hes a subset of a target point set. The method �rst 
onstru
tsa single hash table for all target point sets together. Ea
h point is represented as e0 + �(e1 �e0) + �(e2 � e0), for some �xed 
hoi
e of points e0; e1; e2, and the (�; �)-plane is quantized into atwo-dimensional table, mapping ea
h real 
oordinate pair (�; �) to an integer index pair (k; `).Let there be N target point sets Bi. For ea
h target point set, the following is done. For ea
hthree non-
ollinear points e0; e1; e2 from the point set, express the other points as e0+�(e1�e0)+�(e2 � e0), and append the tuple (i; e0; e1; e2) to entry (k; `). If there are O(m) points in ea
htarget point set, the 
onstru
tion of the hash table is of 
omplexity O(Nm4).Now, given a query point set A, 
hoose three non
ollinear points e00; e01; e02 from the point set,and express ea
h other point as e00 + �(e01 � e00) + �(e02 � e00), and tally a vote for ea
h tuple(i; e0; e1; e2) in entry (k; `) of the table. The tuple (i; e0; e1; e2) that re
eives most votes indi
atesthe target point set Ti 
ontaining the query point set. The aÆne transformation that maps(e00; e01; e02) to the winner (e0; e1; e2) is assumed to be the transformation between the query andthe target. The 
omplexity of mat
hing a single query set of n points is O(n). There are several5



variations of this basi
 method, su
h as balan
ing the hashing table, or avoiding taking all possibleO(n3) 3-tuples.The generalized Hough transform [Bal81℄, or pose 
lustering [Sto87℄, is also a voting s
heme.Here, aÆne transformations are represented by six 
oeÆ
ients. The quantized transformationspa
e is represented as a six-dimensional table. Now for ea
h triplet of points in the query set,and ea
h triplet of points from the target set, 
ompute the transformation between the two triples,and tally a vote in the 
orresponding entry of the table. This must be done for all target pointsets. The entry with the highest s
ore is assumed to be the transformation between the query andthe target. The 
omplexity of mat
hing a single query set is O(Nm3n3).In the alignment method [HU87, Ull96℄, for ea
h triplet of points from the query set, andea
h triplet from the target set, we 
ompute the transformation between them. With ea
h su
htransformation, all the other points from the target set are transformed. If they mat
h with querypoints, the transformation re
eives a vote, and if the number of votes is above a 
hosen threshold,the transformation is assumed to be the mat
hing transformation between the query and thetarget. The 
omplexity of mat
hing a single query set is O(Nm4n3).Variations of these methods also work for geometri
 features other than points, and for othertransformations than aÆne transformations. A 
omparison between geometri
 hashing, pose 
lus-tering, and the alignment method is made in [Wol90℄. Other voting s
hemes exist, for exampletaking a probabilisti
 approa
h [Ols97℄.2.4 Computational GeometryComputational geometry is the subarea of algorithms design that deals with geometri
 problemsinvolving operations on obje
ts like points, lines, polygons, and polyhedra. Over the past twentyyears the area has grown into a main-stream world-wide resear
h a
tivity. The su

ess of the �eldas a resear
h dis
ipline 
an be explained by the beauty of the problems and their solutions, and bythe many appli
ations in whi
h geometri
 problems and algorithms play a fundamental role. Thestandard approa
h taken in 
omputational geometry is the development of exa
t, provably 
orre
tand eÆ
ient solutions to geometri
 problems. See for example the text books [Mul93℄ [O'R94℄[dBvKOS97℄ [BY98℄ and the handbook [GO97℄.The impa
t of 
omputational geometry on appli
ation domains was minor up to a few yearsago. On one hand, the resear
h 
ommunity has been developing more interest in appli
ationproblems and real world 
onditions, and develops more software implementations of the mosteÆ
ient algorithms available. On the other hand, there is more interest from the appli
ationdomains in 
omputational geometry te
hniques, and 
ompanies even start to spe
i�
ally require
omputational geometry expertise.Aspe
ts that play an important role in the algorithmi
 solutions to mat
hing are the repre-sentation, de
omposition, approximation, and deformation of shapes, the transformation of oneshape to another, the measurement of shape similarity, and the organization of shapes into sear
hstru
tures. In the following we give an overview of the state of the art in geometri
 shape mat
hingfrom the 
omputational geometry point of view. It should be noted though that the boundaryof the �eld of 
omputational geometry is not sharp, and 
onsidering a method a 
omputationalgeometry method or not is somewhat arbitrary.First we 
onsider properties of dissimilarity measures, then we list a number of problems inshape mat
hing, together with the best known result to solve them. We are primarily 
on
ernedwith patterns de�ned by �nite point sets, 
urves, and regions. Unless otherwise stated, patternsare a subset of R2 , and the underlying distan
es are Eu
lidean.3 Dissimilarity MeasuresMany pattern mat
hing and re
ognition te
hniques are based on a similarity measure betweenpatterns. A similarity measure is a fun
tion de�ned on pairs of patterns indi
ating the degree ofresemblan
e of the patterns. It is desirable that su
h a similarity measure is a metri
. Furthermore,6



a similarity measure should be invariant for the geometri
al transformation group that 
orrespondsto the mat
hing problem. Below, we dis
uss a number of properties of metri
s, su
h as invarian
efor transformation groups.Let S be any set of obje
ts. A metri
 on S is a fun
tion d : S�S ! R satisfying the followingthree 
onditions for all x; y; z 2 S [Cop68℄:(i) d(x; x) = 0;(ii) d(x; y) = 0 implies x = y;(iii) (triangle inequality) d(x; y) + d(x; z) � d(y; z).If a fun
tion satis�es only (i) and (iii), then it is 
alled a semimetri
. Symmetry follows from(i) and (iii): d(y; z) � d(z; y) + d(z; z) = d(z; y), and d(z; y) � d(y; z) + d(y; y) = d(y; z), sod(y; z) = d(z; y). An alternative triangle inequality is the following:(iii0) d(x; y) + d(y + z) � d(x; z),but (i) and (iii0) do not imply symmetry:(iv0) d(x; y) = d(y; x)So only if d satis�es (iv0) in addition to (i) and (iii0), it is a semimetri
. Any (semi)metri
 isnonnegative: d(x; y) + d(y; x) � d(x; x), so d(x; x) � 0.A set S with a �xed metri
 d is 
alled a metri
 spa
e. Given two elements x and y of S,the value d(x; y) is 
alled the distan
e between x and y. By identifying elements of S with zerodistan
e, any semimetri
 indu
es a metri
 on the resulting partition.A set of bije
tions G in S is a transformation group if g�1h 2 G for all g; h 2 G. A (semi)metri
d on a set S is said to be invariant for the transformation group G a
ting on S if d(g(x); g(y)) =d(x; y) for all g 2 G and x; y 2 S.The orbit of G passing through x 2 S is the set of images of x under G:G(x) = fg(x) j g 2 Gg:The orbits form a partition of S. The 
olle
tion of all orbits is 
alled the orbit set, denoted byS=G.The following theorem shows that a semimetri
 invariant under a transformation group resultsin a natural semimetri
 on the orbit set. Ru
klidge [Ru
96℄ used this prin
iple to de�ne a shapedistan
e based on the Hausdor� distan
e.Theorem 3.1 Let G be a transformation group for a set S; let d be a semimetri
 on S invariantfor G. Then ~d : S=G� S=G! R de�ned by~d(G(x); G(y)) = inffd(g(x); y) j g 2 Ggis a semimetri
.Let P be a �xed 
olle
tion of subsets of R2 . Any element of P is 
alled a pattern. We 
allthe 
olle
tion P with a �xed metri
 d a metri
 pattern spa
e. A 
olle
tion of patterns P and atransformation groupG determine a family of shapes P=G. For a pattern A 2 P , the 
orrespondingshape equals the orbit G(A) = fg(A) j g 2 Gg:The 
olle
tion of all these orbits forms a shape spa
e. If d is invariant for G, then Theorem 3.1gives a semimetri
 ~d on the shape spa
e P=G.Shape mat
hing often involves 
omputing the similarity between two patterns, independent oftransformation. This is exa
tly what the shape metri
 ~d is good for. Given two patterns A and B,7



A B g(A)g(B)
Figure 5: AÆne invarian
e: d(A;B) = d(g(A); g(B)).it determines the greatest lower bound of all d(g(A); B) under transformations g 2 G, resulting ina transformation-independent distan
e between the 
orresponding shapes G(A) and G(B).A 
olle
tion of patterns P uniquely determines a maximal subgroup T of the homeomorphismsunder whi
h P is 
losed. (Homeomorphims are 
ontinuous, bije
tive fun
tions having a 
ontinuousinverse.) The subgroup T 
onsists of all homeomorphism t su
h that both the image t(A) and theinverse image t�1(A) are members of P for all patterns A 2 P .The metri
 pattern spa
e (X;P ; d) is invariant for a transformation g 2 T if d(g(A); g(B))equals d(A;B) for all A and B in P . The invarian
e group G of a metri
 pattern spa
e 
onsistsof all transformations in T for whi
h it is invariant. AÆne invarian
e is often desired in manypattern mat
hing and shape re
ognition tasks. Figure 5 shows patterns A and B in the Eu
lideanplane, and image patterns g(A) and g(B) under an aÆne transformation g. Invarian
e for aÆnetransformations makes the distan
e between two patterns independent of the 
hoi
e of 
oordinatesystem.Finding an aÆne invariant metri
 for patterns is not so diÆ
ult. Indeed, a metri
 that isinvariant not only for aÆne transformations, but for general homeomorphisms is the dis
retemetri
: d(A;B) = (0 if A equals B1 otherwiseHowever, this metri
 la
ks useful properties. For example, if a pattern A is only slightly distortedto form a pattern A0, the dis
rete distan
e d(A;A0) is already maximal.Therefore it makes sense to devise metri
s with spe
i�
 properties. A frequently used dissim-ilarity measure is the Hausdor� distan
e, whi
h is de�ned for arbitrary non-empty bounded and
losed sets A and B as the in�mum of the distan
e of the points in A to B and the points in B toA. This 
an be formulated as follows:d(A;B) = inff� > 0 j A � B� and B � A�gwhere A� denotes the union of all disks with radius � 
entered at a point in A. The Hausdor�distan
e is a metri
. The invarian
e group for the Hausdor� distan
e 
onsists of isomorphisms(rigid motions and re
e
tions). The Hausdor� distan
e is robust against small deformations, butit is sensitive to noise: a single outlier, a far away noise point, drasti
ally in
reases the Hausdor�distan
e, see Figure 6.In the next few se
tions, we give an overview of dissimilarity measures for more restri
tedpatterns: �nite point sets, 
urves, and regions. Then, in Se
tion 7 we will list a number ofrobustness properties for these measures.4 Finite point setsLet A and B be point sets of sizes n and m resp. Mat
hing the point sets means �nding a
orresponden
e between points of A and points of B. An optimal mat
hing minimizes somedissimilarity measure between the point sets. The 
orresponden
e 
an be many-to-many, but alsoone-to-one, both have their appli
ations. Mat
hing has been studied extensively in a graph theory8



A Bd(A;B)
Figure 6: Hausdor� distan
e.setting, where the problem is to �nd a mat
hing in a graph (V;E) with verti
es V = A [ B, andgiven edges E with weights. Exploiting the geometri
 nature if the verti
es are points, and theweights are distan
es between points, results in more eÆ
ient algorithms, see [Vai89℄ for example.4.1 Bottlene
k mat
hingLet A and B be two point sets of size n, and d(a; b) a distan
e between two points. The bottlene
kdistan
e is the minimum over all 1 � 1 
orresponden
es f between A and B of the maximumdistan
e d(a; f(a)). The results on bottlene
k distan
e mentioned in this se
tion are due to [EI96℄.If d(a; b) is the Eu
lidean distan
e, the bottlene
k distan
e between A and B 
an be 
omputedin time O(n1:5 logn). It is 
omputed using a te
hnique 
alled parametri
 sear
h. This is usually
onsidered an impra
ti
al method, although it has been implemented for other problems [SSS97℄.An alternative is to 
ompute an approximation d to the bottlene
k distan
e d�. An approximatemat
hing between A and B with d the furthest mat
hed pair, su
h that d� < d < (1 + �)d�, 
anbe 
omputed in time O(n1:5 logn). This algorithm makes use of an optimal approximate nearestneighbor algorithm [AMN+94℄.So far we have 
onsidered only the 
omputation problem, 
omputing the distan
e between twopoint sets. The de
ision problem for translations, de
iding whether there exists a translation `su
h that d(Q+ `; B) < �, 
an be done in O(n5 logn) time.Be
ause of the high degree in the 
omplexity, it is interesting to look at approximations witha fa
tor �: d(Q + `; B) < (1 + �)d(Q + `�; T ). Finding su
h a translation 
an be done in O(n2:5)time [S
h92℄.The optimization problem 
onsiders the 
omputation of the minimum distan
e under a groupof transformations. It �nds the optimal transformation f� su
h that d(f(A); B) is minimized.For rigid motions (translations plus rotations, sometimes 
alled 
ongruen
es), this 
an be foundin time O(n6 logn) [AMWW88℄. For translations only, it 
an be 
omputed in time O(n5 log2 n)[EI96℄.An approximation translation ` within fa
tor two, d(A+`; B) � 2d(A+`�; B), 
an be obtainedby translating A su
h that the lower left 
orner of the axis parallel bounding box (
alled referen
epoint) 
oin
ides with the one of B. An approximation with fa
tor 1 + � < 2 
an be obtained intime O(C(�; d)n1:5 logn) time, with C(�; d) a 
onstant depending on � and dimension d: C(�; d) =( 1+��2 )d log(1=�).Some variations on 
omputing the bottlene
k distan
e between point sets are the following. IfA is a set of points, and B a set of segments, 
omputing the bottlene
k distan
e 
an be done inO(n1:5+�) time. When the point are in Rd and the distan
e is L1, it 
an be 
omputed in timeO(n1:5 logd�1 n).Let A and B be two point sets of size m and n, and k a number not larger than m and n. Theproblem of �nding the smallest bottlene
k distan
e over all one-to-one mat
hings between k pointsin A and k points in B 
an be 
omputed in O(m logm+ n1:5 logm) time. Typi
al appli
ation ofthis result is in situations where we sear
h a query pattern A in a larger target pattern B andhave to deal with noise points. 9



4.2 Minimum weight mat
hingThe minimum total distan
e (weight) is the minimum over all 1 � 1 
orresponden
es f betweenA and B of the sum of the distan
es d(a; f(a)). It 
an be 
omputed in O(n2+�) time [AES95℄.Here, the 
onstant � stands for a positive 
onstant whi
h 
an be 
hosen arbitrarily small with anappropriate 
hoi
e of other 
onstants of the algorithm. For the L1 distan
e, it 
an be 
omputedin time O(n2 log3 n) [Vai89℄.4.3 Uniform mat
hingThe `most uniform' distan
e is the minimum over all 1� 1 
orresponden
es f between A and Bof the di�eren
e between the maximum and the minimum d(a; f(a)). The most uniform mat
hingis also 
alled balan
ed or fair mat
hing. The distan
e 
an be 
omputed in time O(n10=3 logn)[EK96℄. It is based on bat
hed range sear
hing, where the ranges are 
ongruent annuli.The problem of �nding the smallest uniform distan
e over all one-to-one mat
hings beteen kpoints in A and k points in B 
an be 
omputed with the same time 
omplexity.4.4 Minimum deviation mat
hingThe minimum deviation distan
e is the minimum over all 1� 1 
orresponden
es f between A andB of the di�eren
e between the maximum and average distan
e d(a; f(a)). This 
an be 
omputedin time O(n10=3+�) [EK96℄.4.5 Hausdor� distan
eIn many appli
ation, for example stereo mat
hing, not all points from A need to have a 
orre-sponding point in B, due to o

lusion and noise. Typi
ally, the two point sets are of di�erent size,so that no one-to-one 
orresponden
e exists between all points. In that 
ase, a dissimilarity mea-sure that is often used is the Hausdor� distan
e. The Hausdor� distan
e was de�ned in Se
tion 3for general sets. For �nite point sets, it 
an equivalently be de�ned as follows.The dire
ted Hausdor� distan
e ~d(A;B) is de�ned as the maximum over all points in A of thedistan
es to a point from B. The Hausdor� distan
e d(A;B) is the maximum of ~d(A;B) and~d(A;B): d(A;B) = maxf~d(A;B); ~d(A;B)g; ~d(A;B) = maxa2A minb2B d(a; b)with d(a; b) the underlying (Eu
lidean, say) distan
e.It 
an be 
omputed using Voronoi diagrams in time O((m+ n) log(m+ n)) [ABB95℄. The useof Voronoi diagrams for 
omputing the Hausdor� distan
e is explained in Se
tion 6.3 for mat
hingpolygons.Given two point sets A and B, the translation `� that minimizes the Hausdor� distan
e d(A+`; B) 
an be determined in time O(mn(logmn)2) when the underlying metri
 is L1 or L1 [CK92℄.This is done using a sear
h stru
ture 
alled segments tree. For other Lp metri
s, p = 2; 3; : : : it 
anbe 
omputed in time O(mn(m + n)�(mn) log(m + n)) [HKS93℄. (�(n) is the inverse A
kermannfun
tion, a very slowly in
reasing fun
tion.) This is done using the upper envelopes of Voronoisurfa
es.Given a real value �, de
iding if there is a rigid motion m (translation plus rotation) su
h thatH(m(A); B) < � 
an be done in time O((m+n)m2n2 logmn) [CGH+97℄. Computing the optimalrigid motion, minimizing H(m(A); B) 
an be done in O((m + n)6 log(mn)) time [HKK92℄. Thisis done using dynami
 Voronoi diagrams.Given the high 
omplexities of these problems, it makes sense to look at approximations.Computing an approximate optimal Hausdor� distan
e under translation and rigid motion 
an bedone in time O((m + n) log(m+ n)) [AAR97℄. 10



Figure 7: Original images, extra
ted points, mat
hing with partial Hausdor� distan
e (lower left),and mat
hing with the aÆne invariant metri
 from [HV99b℄ (lower right).4.6 Transformation spa
e subdivisionMat
hing of �nite points, from images, under homotheties (translation and s
aling) is done bysubdividing the transformation spa
e by [HKR93℄. Rather than the Hausdor� distan
e itself, thepartial Hausdor� distan
e is used, whi
h is the maximum of the two dire
ted partial Hausdor�distan
es ~dk(A;B) and ~dk(B;A):dk(A;B) = maxf~dk(A;B); ~dk(B;A)g; ~dk(A;B) = kthq 2 A mint2B d(a; b)The partial Hausdor� distan
e is not a metri
 sin
e it fails the triangle inequality. The runningtime depends on the depth of subdivision of transformation spa
e.The subdivision of transformation spa
e is generalized to a general framework by [HV99b℄.Here the mat
hing 
an be done with respe
t to other transformations as well, for example, simi-larity (translation, rotation, and s
aling), or aÆne transformation (translation, rotation, s
aling,and shear). The method works for many dissimilarity measures, but we used a te
hnique for
onstru
ting metri
s using fun
tions fA; fB : R2 ! R de�ned on patterns A and B, and the aÆneinvariant metri
 de�ned by integrating the absolute di�eren
e of fA en fB . Figure 7 illustratesmat
hing with this metri
, 
ompared to the partial Hausdor� distan
e.5 CurvesThe most dire
t way of representing 
urves is by their position fun
tion, de�ning all the positionsof the 
urve. A parametri
 
urve A is de�ned in terms of a parameter: A(t) = (x(t); y(t)). Ingeneral, many parameterizations result in the same shape of the 
urve, but have di�erent derivativeve
tors along the 
urve [Vel92℄. A standard parameterization is by ar
 length along the 
urve;the ar
 length is usually denoted by s. Polygonal 
urves (polylines) are usually represented by11



� �Figure 8: Polygonal 
urve and turning fun
tion.their sequen
e of verti
es. An impli
it de�nition of the 
urve, A : f(x; y) = 0, is less often used inmat
hing.Polylines from real world appli
ations often 
ontain many spurious verti
es, whi
h 
an beremoved by approximating the polygon. There are many heuristi
s for approximating polygonal
urves, see e.g. [Ros97℄ for a 
omparison. Two methods of optimal approximation are the following:� Given a polyline A and a number k, 
onstru
t an approximation polyline Ak of k verti
es,minimizing the approximation error, or dissimilarity, d(A;Ak).� Given a polyline and an error bound �, 
onstru
t an approximation polyline A� with dissim-ilarity d(A;A�) < �, minimizing the number of verti
es.Both approximations 
an be 
omputed in O(n2 logn) time for various error measures [II88℄. How-ever, these optimal approximations are not suitable for 
onstru
ting a hierar
hy of approximations,in the sense that ea
h segment at one level may be re�ned at the next level of approximation.Approximating polygons at various levels allows the hierar
hi
al pro
essing of 
urves [Vel98℄.5.1 Turning fun
tionRepresentations other than the position fun
tion are also useful in mat
hing. From the positionfun
tion, other representations 
an be derived, su
h as the tangent, a

eleration, tangent angle,
umulative angle, periodi
 
umulative angle, and the 
urvature fun
tions [vO92℄.The 
umulative angle fun
tion, or turning fun
tion, �A(s) of a polygon A gives the anglebetween the 
ounter
lo
kwise tangent and the x-axis as a fun
tion of the ar
 length s. �A(s)keeps tra
k of the turning that takes pla
e, in
reasing with left hand turns, and de
reasing withright hand turns. Clearly, this fun
tion is invariant under translation of the polyline. Rotating apolyline over an angle � results in a verti
al shift of the fun
tion with an amount �.For polylines, the turning fun
tion is a pie
ewise 
onstant fun
tion, in
reasing or de
reasingat the verti
es, and 
onstant between two 
onse
utive verti
es, see �gure 8.Mat
hing polylines based on the turning fun
tions 
an be done as follows. For simpli
ity, �rstassume that the two 
urves have the same length. The Lp metri
 on fun
tion spa
es, applied to�A and �B, gives a dissimilarity measure on A and B:dA;B = �Z j�A(s)��B(s)jp ds�1=pMinimizing this dissimilarity under rotation �, amounts to minimizing d(A;B) = R j�A(s) ��B(s) + �jp ds. For p = 2, the minimum is obtained for � = R �B(s) ds� R �A(s) ds.In [VV99℄, for the purpose of retrieving hieroglyphi
 shapes, the polygonal 
urves do not havethe same length, so that partial mat
hing 
an be performed. In that 
ase we 
an move the startingpoint of the shorter one along the longer one, and 
onsider only the turning fun
tion where the ar
lengths overlap. This is a variation of the algorithms for mat
hing 
losed polygons with respe
tto the turning fun
tion, whi
h 
an be done in O(mn log(mn)) time [ACH+91℄, see Se
tion 6.Partial mat
hing under s
aling, in addition to rotation and rotation, is more involved. This 
anbe done in time O(m2n2), see [CG97℄. The dissimilarity balan
es the length of a mat
h against12
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1Figure 9: A 
urve and its signature fun
tion.the squared error. Given two mat
hes with the same squared error, the mat
h involving the longerpart of the polylines has a better dissimilarity. The dissimilarity measure is a fun
tion of the s
ale,rotation, and the shift of one polyline along the other. An analyti
 formula of the dissimilarityin terms of s
ale and shift yields a sear
h problem in s
ale-shift plane. This spa
e is divided intoregions. A minimum of the dissimilarity is found by a line sweep over the plane.5.2 Signature fun
tionA less dis
riminative fun
tion is the so-
alled signature fun
tion. At every point along the 
urve,the signature fun
tion � value is the ar
 length of the 
urve to the left or on the tangent line atthat point, see Figure 9. It is invariant under similarity: 
ombinations of translation, rotation,and s
aling. For 
onvex 
urves, the signature fun
tion is one everywhere, be
ause at every point,the whole 
urve lies to the left of the tangent. For a single polyline 
urve, the signature fun
tion
an be 
omputed in time O(n2) [O'R85℄.For polylines, dissimilarity measures 
an be used that are based on `time warps' of sequen
esof elements (verti
es or segments), pairing elements of A to elements of B. The pairing need notbe one-to-one: the pairing of element i of A to element j of B, may be followed by a pairing of ito j+1, i+1 to j, or i+1 to j+1. Using dynami
 programming, this takes time O(nm) [Kru83℄.5.3 AÆne ar
-lengthInstead of turning fun
tions, aÆne invariant representations of 
urves may be used as a basis forshape mat
hing. An example of su
h a representation is aÆne ar
-length. While turning fun
tionsare invariant only under similarity transformations the normalized aÆne ar
-length is invariantfor all aÆne transformations. Huttenlo
her and Kedem [HK90℄ use the one-dimensional Hausdor�distan
e to 
ompare aÆne ar
-length des
riptions of 
urves.Let A : [0; 1℄! R be a two times 
ontinuously di�erentiable 
urve, and let A0 and A00 denotethe �rst and se
ond order derivates, respe
tively. The aÆne ar
 length is the fun
tion � : R ! Rgiven by �(t) = Z t0 jdet(A0(x); A00(x))j 13 dx:The normalised ar
-length is de�ned as follows:��(t) = �(t)�(1) :Instead of these de�nitions, Huttenlo
her and Kedem use a dis
retized version of aÆne ar
-length to represent the boundary of a simple polygon. This dis
retized representation is a �niteset of numbers between 0 and 1, one number for ea
h boundary vertex. Two simple polygons areequal if the respe
tive dis
retized ar
-lengths are equal up to translation modulo 1. This problem13




an be solved in a perturbation-robust manner by minimising the Hausdor� distan
e between thetwo representations (seen as one-dimensional �nite point sets). The latter problem 
an be solvedin O(mn log(mn)) time.5.4 Re
e
tion metri
AÆne-ar
 length 
an be used to de�ne aÆne invariant similarity measures on 
urves. However,there is no straightforward generalization of it to patterns that 
onsist of more than one 
onne
ted
omponent. The re
e
tion metri
 ([HV99a℄) is an aÆne-invariant metri
 that is de�ned on �niteunions of 
urves in the plane.The re
e
tion metri
 is de�ned as follows. First, unions of 
urves are 
onverted into real-valued fun
tions on the plane. Then, these fun
tions are 
ompared using integration, resulting ina similarity measure for the 
orresponding patterns.The fun
tions are formed as follows, for ea
h �nite union of 
urves A. For ea
h x 2 Rn , thevisibility star V xA is de�ned as the union of open line segments 
onne
ting points of A that arevisible from x: V xA =[fxa j a 2 A and A \ xa = ? g:The re
e
tion star RxA is de�ned by interse
ting V xA with its re
e
tion in x:RxA = fx+ v 2 R2 j x� v 2 V xA and x+ v 2 V xA g:The fun
tion �A : R2 ! R is the area of the re
e
tion star in ea
h point:�A(x) = area(RxA):Observe that for points x outside the 
onvex hull of A, this area is always zero. The re
e
tionmetri
 between patterns A and B de�nes a normalised di�eren
e of the 
orresponding fun
tions�A and �B : d(A;B) = RR2 j�A(x)� �B(x)j dxRR2max(�A(x); �B(x)) dx :From the de�nition follows that the re
e
tion metri
 is invariant under all aÆne transforma-tions. In 
ontrast with single-
urve patterns, this metri
 is de�ned also for patterns 
onsisting ofmultiple 
urves. In addition, the re
e
tion metri
 is deformation, blur, 
ra
k, and noise robust.Here, we fo
us at the 
omputation of the re
e
tion metri
 for �nite unions of line segmentsin the plane. First, 
ompute partitions of the plane in whi
h the 
ombinatorial stru
ture of there
e
tion star is 
onstant. Using the latter partition, the re
e
tion distan
e 
an be 
omputed inO(rI(m + n)) time for two separate 
olle
tions of segments with m and n segments, where r isthe 
omplexity of the overlay of two partitions, and I(k) denotes the time needed to integrate theabsolute value of quotients of polynomials with at most degree k over a triangle. Assuming I(k)is linear in k, the overall 
omplexity amounts to O(r(m + n)). The 
omplexity of the overlay, r,is O(m4 + n4).The re
e
tion metri
 
an be generalised to �nite unions of (d� 1)-dimensional hyper-surfa
esin d dimensions. The generalisation 
onsists of repla
ing the two-dimensional area by the d-dimensional volume.5.5 Hausdor� distan
eThe Hausdor� distan
e is not only de�ned for �nite point sets, but for any two 
ompa
t sets.Spe
ial 
ases are sets of polylines. The results for polylines are the same as for polygons, seeSe
tion 6.3. 14



H FFigure 10: Hausdor� (H) and Fr�e
het (F) distan
e between two 
urves.5.6 Fr�e
het distan
eThe Hausdor� distan
e is often not appropriate to measure the dissimilarity between 
urves. Forall points on A, the distan
e to the 
losest point on B may be small, but if we walk forwardalong 
urves A and B simultaneously, and measure the distan
e between 
orresponding points,the maximum of these distan
es may be larger, see Figure 10. This is what is 
alled the Fr�e
hetdistan
e. More formerly, let A and B be two parameterized 
urves A(�(t)) and B(�(t)), and lettheir parameterizations � and � be 
ontinuous fun
tions of the same parameter t 2 [0; 1℄, su
h that�(0) = �(0) = 0, and �(1) = �(1) = 1. The Fr�e
het distan
e is the minimum over all monotonein
reasing parameterizations �(t) and �(t) of the maximal distan
e d(A(�(t)); B(�(t))), t 2 [0; 1℄.[AG95℄ 
onsiders the 
omputation of the Fr�e
het distan
e for the spe
ial 
ase of polylines.De
iding whether the Fr�e
het distan
e is smaller than a given 
onstant, 
an be done in timeO(mn).Based on this result, and the `parametri
 sear
h' te
hnique, it is derived that the 
omputationof the Fr�e
het distan
e 
an be done in time O(mn log(mn)). Although the algorithm has lowasymptoti
 
omplexity, it is not really pra
ti
al. The parametri
 sear
h te
hnique used heremakes use of a sorting network with very high 
onstants in the running time. A simpler sortingalgorithm leads to an asymptoti
 running time of O(mn(logmn)3). Still, the parametri
 sear
h isnot easy to implement. A simpler algorithm, whi
h runs in time O(mn(m + n) log(mn)) is givenin [God91℄.A variation of the Fr�e
het distan
e is obtained by dropping the monoti
ity 
ondition of theparameterization. The resulting Fr�e
het distan
e d(A;B) is a semimetri
: zero distan
e need notmean that the obje
ts are the same, see Se
tion 3. For this the de
ision problem, de
iding whetherd(A;B) < � for a given �, 
an be de
ided in time O(mn). The a
tual distan
e 
an be 
omputedin time O(mn log(mn)).Another variation is to 
onsider partial mat
hing: �nding the part of one 
urve to whi
h theother has the smallest Fr�e
het distan
e. The 
orresponding de
ision problem 
an be solved in timeO(mn log(mn)), the 
omputation problem in time O(mn(log(mn))2).5.7 Size fun
tionRelatively new are so-
alled size fun
tions [VU96℄. Size fun
tions 
an be de�ned for arbitraryplanar graphs and a `measuring fun
tion' D. An example of su
h a measuring fun
tion is thedistan
e from ea
h pattern point to the 
enter of mass. The size fun
tion sD(x; y) is then de�nedas the number of 
onne
ted 
omponents of the set of points with D � y that have at least one pointwith D � x. Size fun
tions do not uniquely represent a shape, but 
lasses of shapes, dependingon the measuring fun
tion.5.8 Pixel 
hainsGiven two sets of pixel 
hains, the root mean square of the distan
es from one set of pixels tothe other, 
an be 
omputed with the relatively eÆ
ient hierar
hi
al 
hamfer mat
hing algorithm,whi
h works on the basis of the distan
e transform and the 
hamfer distan
e [Bor88℄.15



s�A(s)�B(s)
Figure 11: Re
tangles en
losed by �A(s), �B(s), and dotted lines are used for evaluation ofdissimilarity.6 RegionsAs mentioned in Se
tion 2.2.1, normalization of regions, �lled 
ontours, is often done using alge-brai
 moments. For the spe
ial 
ase of polygons, this 
an be done in time linear in the number ofverti
es [Ste96℄.A representation that has proven to be relevant in human vision is the medial axis, produ
inga skeleton and a width value at ea
h point on the skeleton (the so-
alled quen
h fun
tion). Forpolygonal 
ontours, the medial axis and the quen
h fun
tion 
an be 
omputed in time linear in thenumber of verti
es [CSW95℄. For pixel 
hain 
ontours, this 
an be 
omputed using the distan
etransform [Bor86℄.The dissimilarity of 
ontours 
an be based on sample points along the 
ontour 
urve, the whole
ontour 
urve, or the en
losed area. For example, Fourier des
riptors are based on samples of the
ontour. A number of methods based on the 
ontour 
urve and the area are mentioned below.6.1 Turning fun
tionAs already mentioned in Se
tion 5.1, the turning fun
tion is also appli
able for mat
hing regions,and was used by [ACH+91℄ for mat
hing polygons under translation, rotation, and s
aling. Forthe spe
ial 
ase of polygons, mat
hing based on turning fun
tions 
an be done as follows. Firstres
ale both polygons so that the perimeter has length one. The Lp metri
 on fun
tion spa
es,applied to �A and �B , gives a dissimilarity measure on A and B:dA;B = �Z j�A(s)��B(s)jp ds�1=pIf the starting point of the ar
 length parameter of �A(s) is shifted by an amount t, the newfun
tion is �A(s+t). If the polygon is rotated by an angle �, the new fun
tion is �A(s)+�. Makingthe dissimilarity invariant for the starting point of the ar
 length parameter, and minimizing underrotation �, amounts to minimizingdA;B(t; �) = �Z j�A(s+ t)��B(s) + �jp ds�1=pfor t and �.For any �xed t and p = 2, dA;B(t; �) is minimal for � = R �B(s) ds � R �A(s) ds � 2�t. Forpolygons, the turning fun
tions are pie
ewise 
onstant step fun
tions. Therefore dA;B(t; �) 
an beevaluated as the sum of O(m+ n) terms 
orresponding to the areas between the dotted lines, see�gure 11. The minimum dA;B(t; �) is obtained when two steps of the step fun
tions 
oin
ide, ofwhi
h are O(mn) possible solutions. This leads to a straightforward O(mn(m + n)) algorithm.This 
an be sped up by in
remental evaluation of dA;B(t; �) for all the O(mn) possible solutions,giving an algorithm of time 
omplexity O(mn log(mn)) [ACH+91℄.It should be noted that nonuniform noise in the form of perturbation of verti
es unevenlyspread along the polygon is problemati
 for this distan
e fun
tion.16
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Figure 12: Polygon and its Voronoi diagram.6.2 Fr�e
het distan
eParameterized 
ontours are 
urves where the starting point and ending point are the same. How-ever, the starting and ending point 
ould as well lie somewhere else on the 
ontour, without
hanging the shape of the 
ontour 
urve. De
iding whether the Fr�e
het distan
e of two 
ontours issmaller than �, irrespe
tive the starting point, 
an done in time O(mn log(mn)). The 
orrespond-ing 
omputation problem, 
omputing the Fr�e
het distan
e, 
an be solved in time O(mn(log(mn))2)[AG95℄.For 
onvex 
ontours 
urves, the Fr�e
het distan
e is equal to the Hausdor� distan
e, whi
h 
anbe 
omputed in time O(mn log(mn)) [ABGW90℄.6.3 Hausdor� distan
eGiven two polygons A and B, the dire
ted Hausdor� distan
e from A to B 
an be 
omputed usingthe Voronoi diagram of B, whi
h assigns to ea
h vertex and edge of A a region of points that lie
loser to that vertex or edge than to any other, see Figure 12. If the edges in the Voronoi diagramseparate regions of two edges (e.g. l(e1; e2)), or two verti
es (e.g. l(v1; v3)), or the regions of anedge and its endpoint vertex (e.g. l(v1; e1)), then they are line segments. The Voronoi edge is aparaboli
 segment if it separates regions of a polygon edge and a vertex that not its endpoint (e.g.p(v1; e2)). The Voronoi diagram of B has O(n) edges, and it 
an be 
omputed in time O(n logn).To 
ompute the dire
ted Hausdor� distan
e from A to B, let us 
onsider the part of B thatfalls within a single region of the Voronoi diagram of A, for example the thi
k line segments inFigure 13. Moving along the thi
k polyline, the distan
e to B �rst de
reases, than in
reases, so themaximal distan
e is obtained at the interse
tion of the thi
k segments with the Voronoi diagram.In general, the maximal distan
e is obtained at a vertex of A or at an interse
tion point of Awith the Voronoi diagram. Note that there 
an be multiple interse
tion points on an edge of theVoronoi diagram, and the largest distan
e is obtained at the interse
tion with the largest or thesmallest 
oordinates; there are O(m+n) of these points. At those points of A where the maximaldistan
e 
an o

ur, we have to a
tually 
ompute to distan
e to B, and take the maximum. This
an be done in time O((m+ n) log(m+ n)) by a plane sweep algorithm, see [ABB95℄ for details.Given two polygons, the minimal Hausdor� distan
e under translation 
an be 
omputed intime O((mn)2(log(m + n))3) using parametri
 sear
h [AST94℄, or simpler in time O((mn)3(m+n) log(m+ n)) [ABB92℄.Given the high 
omplexities, it makes sense to implement approximation algorithms to �nda transformation that gives a Hausdor� distan
e that is at most a 
onstant times the minimumdistan
e. For mat
hing under translations, this 
an be done the following way. Let `A be thelower left 
orner of the axis parallel bounding box of A, i.e. it has the smallest x-
oordinate of allpoints in A, and also, independently, the smallest y-
oordinate of all points in A. Suppose that the17
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Figure 13: Overlay of polygon A with the Voronoi diagram of B.optimal translation of A would be f , so that the Hausdor� distan
e dH = d(f(A); B) is minimal.Then the distan
e between `A and `B 
annot be larger than dHp2. So if g is the translation thatmaps `A onto `B , then the Hausdor� distan
e d(g(A); B) is at most a fa
tor (1 +p2) times theoptimal dH [ABB95℄. Determining g 
an obviously be done in time O(m+n), but 
omputing theresulting distan
e still takes O(m+ n) log(m+ n), as above.The minimal Hausdor� distan
e under rigid motions (not only translations, but also rotations)
an be 
omputed in time O((mn)4(m + n) log(m + n)) [ABB92℄. So again, an approximationalgorithm is interesting. Let kA be the 
entroid of the edges of the 
onvex hull of A. Supposethat the optimal rigid motion of A would be f , so that the Hausdor� distan
e dH = d(f(A); B) isminimal. There are many rigid motions of A that map kA onto kB . If g is the one that gives thesmallest Hausdor� distan
e, then the Hausdor� distan
e d(g(A); B) is at most a fa
tor (4� + 3)times the optimal dH . For details about how to determine g, see [ABB95℄. The time 
omplexity isO((mn) log(mn) log�(mn)). (The notation O(log� n) means inffkj log log (k times): : : logn � 1g).In words, it is the number of times that log has be applied to get down from n to below one. Forexample log� 24294967296 is only 6.)6.4 Area of overlap and symmetri
 di�eren
eTwo dissimilarity measures that are based on the area en
losed by the polygons rather than theboundaries, are the area of overlap and the area of symmetri
 di�eren
e. For two 
ompa
t sets Aand B, the area of overlap is de�ned as area(A\B), the area of symmetri
 di�eren
e is de�ned asarea((A�B)[(B�A)), see �gure 14. These dissimilarity measure is a metri
. The invarian
e groupis the 
lass of di�eomorphisms with unit Ja
obi-determinant. For translations, the transformationthat maximizes the area overlap also minimizes the area of symmetri
 di�eren
e.Given two polygons, 
omputing the area of overlap 
an be done by 
omputing the arrangementof two simple polygons, the 
ombinatorial stru
ture of point, edges, and fa
ets resulting fromoverlaying the two polygons. This 
an be done in time O(n log� n + C), with C the 
omplexityof the arrangement (number of verti
es, edges, and fa
ets). After prepro
essing, taking O((mn)2)time, the area of overlap 
an be 
omputed more eÆ
iently, even for any translation of one polygonwith respe
t to the other, in time O(log(m+ n)) [MW96℄.If the polygons are 
onvex, 
omputing the smallest area of overlay under translations 
an bedone in time O((m + n) log(m + n)) [dBDvK+96℄. It turns out that translating the polygons sothat their 
entroids 
oin
ide gives an overlap of at least 9/25 of the optimal solution [dBDvK+96℄.Translating 
onvex polygons so that their 
entroids 
oin
ide also gives an approximate solutionfor the symmetri
 di�eren
e, whi
h is at most 11/3 of the optimal solution under translations[AFRW96℄. This also holds for a set of transformations F other than translations, if the following18



A � B B � AB
A

Figure 14: Area of overlap and symmetri
 di�eren
e.
Figure 15: Dis
retization e�e
ts: deformation, blur, 
ra
ks, and noise.holds: the 
entroid of A, 
(A), is equivariant under the transformations, i.e. 
(f(A)) = f(
(A))for all f in F , and F is 
losed under 
omposition with translation.The 
omputation of the 
entroids 
an be done in linear time by triangulating ea
h polygon,determining the 
entroids and areas of the triangles, and then determining the total 
entroids asthe weighted sum of the triangle 
entroids. This takes time linear in the number of verti
es.Normalizing the area of overlap and symmetri
 di�eren
e by the area of the union of the twopolygons makes these measures invariant under a larger transformation group, namely the groupof all di�eomorphisms f(x) with a Ja
obi determinant that is 
onstant over all points x 2 R2[HV99a℄.7 RobustnessWe have alread seen in Se
tion 3 that the Hausdor� distan
e is not robust against noise. Thereare other types of distortions that 
an also have its e�e
t on the measure of dissimilarity betweentwo patterns. Figure 15 shows the e�e
t dis
retization 
an have on a pattern, su
h as deformation,blurring, as well as the formation of 
ra
ks and noise. If we have a robust, invariant metri
 onpatterns, then we 
an perform shape mat
hing in a robust manner by using the shape metri
.Below, we formalize four types of robustness. We introdu
e four axioms expressing robustnessfor what we 
all `deformation', `blur', `
ra
ks' and `noise'. Deformation robustness says that ea
hpoint in a pattern may be moved a little bit without seriously a�e
ting the value of the metri
.Blur robustness says that new points may be added 
lose to the original pattern. Cra
k robustnesssays that 
omponents of patterns may be broken up as long as the 
ra
ks are relatively thin. Noiserobustness says that new small parts may be added to a pattern.Let P be a 
olle
tion of patterns in R2 , and let T be the maximal group of homeomorphismsunder whi
h P is 
losed. A metri
 d on P is 
alled deformation robust if it satis�es the followingaxiom:Axiom 7.1 For ea
h A 2 P and � > 0, there is a Æ > 0 su
h that kx� t(x)k < Æ for all x 2 bd(A)implies d(A; t(A)) < � for all t 2 T . 19



bd(t(A)) bd(A)Figure 16: Deformation robust. U bd(A)bd(B)� bd(A)Figure 17: Blur robust.Uxbd(A)
Figure 18: Cra
k robust. Uxbd(A)Figure 19: Noise robust.Deformation robustness is equivalent to saying that for ea
h pattern A 2 P , the map t 7! t(A)with domain T and range P is 
ontinuous. Figure 16 shows the image of A under a transformationwith a small Æ in the sense of Axiom 7.1.In the following, the boundary of a pattern is denoted with bd(A). We 
all a metri
 patternspa
e blur robust if the following holds:Axiom 7.2 For ea
h A 2 P and � > 0, an open neighborhood U of bd(A) exists, su
h thatd(A;B) < � for all B 2 P satisfying B � U = A� U and bd(A) � bd(B).The axiom says that additions 
lose to the boundary of A do not 
ause dis
ontinuities. Figure 17shows a neighborhood U of A in whi
h parts of B o

ur that are not in A.We say that a metri
 pattern spa
e is 
ra
k robust if the next axiom holds:Axiom 7.3 For ea
h A 2 P, ea
h \
ra
k" x 2 bd(A), and � > 0, an open neighborhood U of xexists su
h that A� U = B � U implies d(A;B) < � for all B 2 P.The axiom says that applying 
hanges to A within a small enough neighborhood of a boundarypoint of A results in a pattern B 
lose to A in pattern spa
e. Whether the 
onne
tedness ispreserved does not matter.If the following axiom is satis�ed, we 
all a metri
 pattern spa
e noise robust:Axiom 7.4 For ea
h A 2 P, x 2 R2 � bd(A), and � > 0, an open neighborhood U of x exists su
hthat B � U = A� U implies d(A;B) < � for all B 2 P.This axiom says that 
hanges in patterns do not 
ause dis
ontinuities in pattern distan
e, providedthe 
hanges happen within small regions. By means of the triangle inequality, we obtain anequivalent axiom when neighborhoods of �nite point sets instead of singletons are 
onsidered.Figure 19 shows a pattern A and a point x. Addition of noise B�A within a neighborhood Uof x results in a new pattern B. Axiom 7.4 says that the distan
e between A and B 
an be madesmaller by making U smaller.All these robustness axioms 
an also be formulated for patterns in higher dimensions. For amore detailed des
ription, see [HV99
℄.For the dissimilarity measures treated in the previous se
tions, table 1 lists the invarian
egroup, and whi
h robustness axioms are satis�ed. For a more detailed treatment, see [HV99a℄.20



distan
e pattern inv. group deform blur 
ra
k noisebottlene
k �nite pointsets iso yes n.a. n.a. n.a.minimumweight �nite pointsets iso yes n.a. n.a. n.a.most uniform �nite pointsets iso yes n.a. n.a. n.a.minimumdeviation �nite pointsets iso yes n.a. n.a. n.a.Fr�e
het 
urves iso yes n.a. n.a. n.a.turning fun
 +Lp 
urves sim yes n.a. n.a. n.a.signature fun
.+ warp 
urves sim yes n.a. n.a. n.a.norm. a�. ar
length + Hausd. 
urves a� no n.a. n.a. n.a.re
e
tion sets of 
urves a� yes yes yes yesnorm. areasymm. di�. regions di�-
j yes yes yes yesnorm. areaoverlap regions di�-
j yes yes yes yesHausdor� non-empty
ompa
t sets iso yes yes yes nodis
rete point sets hom no no no noTable 1: Patterns, metri
s, invarian
e group, and robustness. `Iso' means the group of isomor-phisms, `sim' means similarities, `di�-
j' means di�eomorphisms with 
onstant Ja
obian deter-minant. `N.a.' formally means that the axiom is satis�ed, but that this is meaningless for thatpattern and distan
e (not appli
able).The distan
e measure that is most suitable for any parti
ular appli
ation totally depends on theappli
ation at hand.8 SoftwareMost of these results are so re
ent that almost no implementations are available. Code for mat
hingpoint sets under the Hausdor� distan
e is made available via http://www3.
s.
ornell.edu/dph/do
s/. Code for polygon similarity testing using turning angles is available via the Stony BrookAlgorithm Repository, see http://www.
s.sunysb.edu/~algorith/files/shape-similarity.shtml. Software for size fun
tions and mat
hing with size fun
tions is available via http://www.dm.unibo.it/~ferri/vismath/sizef
ts/sizehom2.htm. No mat
hing software is available viaNetlib (http://netlib.bell-labs.
om/netlib/index.html), and no mat
hing software at allis mentioned in the overview of 
omputational geometry software of [Ame97℄.For implementing geometri
 algorithms, CGAL, the Computational Geometry Algorithms Li-brary is available via http://www.
s.uu.nl/CGAL/. The library provides geometri
 primitivessu
h as points, lines, and triangles, basi
 operations su
h as distan
e and interse
tion 
al
ulations,as well as higher level data stru
tures and algorithms su
h as triangulation, 
onvex hull, planarmap, et
. 21
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