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1 Background

In this report, the work in paper [1] is going to be presented and their contributions will
be discussed. The paper is published in 2017 and written by Nicolas Courty, Rémi Flamary,
Amaury Habrard and Alain Rakotomamonjy. In paper [1], solving the domain adaptation
problem based on optimal transport is investigated and studied, and the unsupervised domain
adaptation problem where data labels are only available in the source domain is addressed.

1.1 Domain Adaptation

Domain Adaptation (DA) is a technique related to machine learning and transfer learning[2].
At the beginning, in most theoretical and empirical studies, models are assumed to be trained
and tested using data gathered from some fixed distributions.[5] When training and test data
are drawn from the same distribution, many discriminative learning methods for classification
have good performance.[6] However, in many practical applications, source domains and target
domains are different. In other words, the data used for training the model may not follow the
same distribution with target domain. Then, two questions appear:

1) under what conditions can a classifier trained from source data be expected to perform
well on target data?

2) how can we train a model from some source domains and then apply it to different target
domains with the lowest target error at test time?

Therefore, we are going to read paper [1] to find out the answers are addressed by the
authors for these two questions.

If the domain adaptation is done correctly, models built on a specific data representation
become more robust when confronted to data depicting the same classes, but described by
another observation system. Among the many strategies proposed, finding domain-invariant
representations has shown excellent properties, in particular since it allows to train a unique
classifier effective in all domains.

1.2 Optimal Transport

Since the Optimal Transport (OT) can be applied in computing distances between proba-
bility distributions, many researchers in different fields have raised interest in OT problems.
Wasserstein, Monge-Kantorovich or Earth Mover distances are three typical distances which
are widely used. They share some central properties: i) They can be evaluated directly on
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empirical estimates of the distributions without having to smoothen them using nonparametric
or semi-parametric approaches; ii) By exploiting the geometry of the underlying metric space,
they provide meaningful distances even when the supports of the distributions do not overlap.
In the work of paper [1], the 1-Wasserstein distance is used.

2 Introduction of Work in Paper[1]

2.1 Notations

Let Ω P Rd be an input measurable space of dimension d and C the set of possible labels.
PpΩq denotes the set of all the probability measures over Ω. The standard learning paradigm
assumes the existence of a set of training data XS � txsi uNs

i�1 associated with a set of class labels
YS � tysi uNs

i�1 where ysi P C, and a testing data set XT � txtiuNt
i�1 with unknown labels. Ns and

Nt are the number of components of XS and XT respectively. PpΩ�Cq refers to all probability
over Ω� C. Pspx, yq, Ptpx, yq P PpΩ� Cq are respectivel joint probability distributions in source
and target domain. µs and µt denotes marginal distributions over XS and XT .

2.2 Assumptions

In domain adaptation problems, most domain adaptation methods would have at least one
of the two following assumptions:

Class imbalance: Label distributions are different in the two domains (Pspyq � Ptpyq), but
the conditional distributions of the samples with respect to the labels are the same (Pspxs|yq �
Ptpxt|yq);

Covariate shift: Conditional distributions of the labels with respect to the data are equal
pPspy|xsq � Ptpy|xtq, or equivalently fs � ft � fq. However, data distributions in the two
domains are supposed to be different pPspxsq � Ptpxtqq.

Note that this difference should be small if the adaptation techniques are supposed to be
effective. The first assumption is considering the difference of label distributions, whereas the
second one talks about the difference of data distributions. But the conditional distributions
are supposed to be the same. Although there is no clear reason which make these assumptions
hold, they are still widely considered since it is too difficult to adapt both marginal feature and
conditional distributions by minimzing a global divergence between DS and DT . In practical
applications, the drift occurring between the source and the target domains generally implies a
change in both marginal and conditional distributions.[3]

Thus, in paper[1], both marginal and conditional distributions are considered. C. Nicolas et
al.[1] assumed that there exists a nonlinear transformation between the label space distributions
of the source and target domains that can be estimated with optimal transport T : Ωs Ñ Ωt.
Additionnally, it is assumed that the transformation preserves the conditional distribution.

Pspy|xsq � Ptpy|Tpxsqq (1)

The (1) indicates that the label information is preserved by the transformation, and the Bayes
decision functions are tied through the equation

ftpTpxqq � fspxq (2)

2.3 DA problem with OT

2.3.1 Problem formulation

In DA problem, to find out the set of labels YT associated with XT , the empirical estimate
of the joint probability distribution P pX,Y q P P pΩ � Cq from pXS , YSq will be usually relied
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on under the assumption that XS and XT are drawn from the same distribution µ P P pΩq. In
paper[1], the authors also assume that there exist two distinct joint probability distributions
PspX,Y q and PtpX,Y q which correspond respectively to two different source and target domains.
we study two different (but related) distributions DS and DT on X�Y . The DA task consists of
the transfer of knowledge from DS to DT . optimal transport formulation in domain adaptation:

γ0 � arg min
γPΠpµs,µtq

»
Ω�Ω

dpx1,x2qdγpx1,x2q (3)

where Πpµs, µtq � tγ P PpΩ � Ωq|p�#γ � µs, p
�#γ � µtu, p�, p� denotes the two marginal

projections of Ω � Ω to Ω, and p#γ is the image measure of γ by p, dpx1,x2q is the distance
function between x1 and x2.

To handle a change in both marginal and conditional distributions, a joint distribution
optimal transport loss is investigated

γ0 � arg min
γPΠpPs,Ptq

»
pΩ�Cq2

Dpx1, y1; x2, y2qdγpx1, y1; x2, y2q (4)

where D � αdpx1,x2q�Lpy1, y2q is a joint cost measure combining both distance dpx1,x2q and
a loss function Lpy1, y2q which measures the discrepancy between y1 and y2. Moreover, the
loss function L is assumed to be bounded, symmetric, k�Lipschitz and satisfying the triangle
inequality, that is, @y1, y2, y3 P C

Symmetric: Lpy1, y2q � Lpy2, y1q, (5)

k-Lipschitz: Dk ¡ 0, such that|Lpy1, y2q � Lpy1, y3q| ¤ k|y2 � y3|, (6)

Triangle inequality: Lpy1, y3q ¤ Lpy1, y2q � Lpy2, y3q, (7)

These properties will be used in proof of bounded error.
In the unsupervised DA problem, we do not have access to labels in the target domain, and

thus it is very difficult to find the coupled optimal solution. Let f : Ω Ñ C be an hypothesis
label function from a given class of hypothesis H in the target domain. Define the following
joint distribution based on f as a proxy for y in DT :

P ft � px, fpxqqx�µt (8)

And the empirical versions of Ps, Pt are considered:

P̂s � 1

Ns

Nş

i�1

δxs
i ,y

s
i
, P̂ ft � 1

Nt

Nţ

i�1

δxt
i,fpxt

iq. (9)

In the discrete case, γ will be a matrix which belongs to ∆, that is, the transportation polytope
of nonnegative matrices between uniform distributions. The goal is to estimate a prediction f
on target domain, and then the OT problem can be formulated as

min
f,γP∆

¸
i,j

Dpxsi , ysi ; xtj , fpxtjqqγij � min
f
W1pP̂s, P̂ ft q (10)

where W1 is the 1-Wasserstein distance for D, formulated as:

W1pPs, P ft q � inf
ΠPΠpPs,P

f
t q

»
pΩ�Cq2

αdpxs,xtq � Lpys, yft qdΠppxs, ysq, pxt, yft qq. (11)
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2.3.2 Proof of Bound on the Target Error

The authors[1] addressed the first question by proving that the proposed classifier’s target
error in terms of its source error and the divergence between the two domains is bounded.
Define the expected loss in the target domain errT pfq and source domain errSpfq by

errT pfq � Epx,yq�Pt
Lpy, fpxqq, errSpfq � Epx,yq�Ps

Lpy, fpxqq (12)

Here, E denotes the expectation function. Then the expected inter function loss errT pf, gq �
Epx,yq�Pt

Lpgpxq, fpxqq. And in order to get the bound of error, Probabilistic Transfer Lipschitz-
ness (PTL) is defined by

Definition 1 Let µs and µt be respectively the source and target distributions. Let φ : R Ñ
r0, 1s. A labeling function f : Ω Ñ R and a joint distribution Πpµs, µtq over µs and µt are
φ-Lipschitz transferable if for all λ ¡ 0:

Prpx1,x2q�Πpµs,µtqr|fpx1q � fpx2q| ¡ λdpx1,x2qs ¤ φpλq. (13)

Here, Pr is the probability function, and |fpx1q � fpx2q| refers to the difference of labels. This
definition says that the probability of finding pairs of source-target instances labeled differently
is bounded in a p1{λq-ball when given deterministic labeling functions f and a coupling Π.
In addition, definition 1 is useful for proving empirical concentration result for Wasserstein
distance. Based on the definitions and assumptions above, a theorem for upper boundof errT pfq
is given in paper [1]: there exists, c0 and N ¡ 0, such that for Ns ¡ N and Nt ¡ N , for all
λ ¡ 0, with α � kλ, we have with probability at least 1� φ:

errT pfq ¤ W1pP̂s, P̂ ft q �
c

2

c1
logp2

δ
qp 1?

Ns
� 1?

Nt
q

�errSpf�q � errT pf�q � kMφpλq (14)

In (14),
b

2
c1 logp2

δ qp 1?
Ns

� 1?
Nt
q corresponds to the objective function, errSpf�q � errT pf�q

relates to the joint error minimizer illustrating that domain adaptation can work only if we can
predict well in both domains, and kMφpλq assesses the probability under which the PTL does
not hold.

2.3.3 Learning with Joint Distribution OT

In paper [1], an optimization approach based on block coordinate Descent has been proposed
to solve the Joint Distribution OT problem. Assume that the function space to which f belongs
is either a RKHS or a function space parametrized by some parameters w P Rp. Instead of
solving (10), a regularized optimal transport formulation is considered:

min
fPH,γP∆

¸
i,j

γi,jpαdpxsi ,xtiq � Lpysi , fpxtjqqq � λΩpfq (15)

where Ωpfq is the regularization term either a non-decreasing function of the squared-norm or
a squared-norm on the vector parameter. Additionally, Ωpfq is continuously differentiable. The
idea of the regularization form is that due to most elements of γ0 should be zero with high
probability, a smoother version of the transport could be found by lowering its sparsity, by
increasing its entropy. As a result, the optimal transport γ for (15) will have a denser coupling
between the distributions. Then, with fixed γ, the optimization problem (15) can reformulated
as

min
fPH

¸
i,j

Lpysi , fpxtjqq � λΩpfq (16)
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Then the Frame of Block coordinate descent algorithm for joint distribution OT problem can
be concluded as below

Initialization function f0 and set k � 1;
Set α and λ;
while not converged do

γk Ð Solve OT problem (10) with fixed fk�1;

fk Ð Solve learning problem (16) with fixed γk;
k Ð k � 1;

end

Algorithm 1: Optimization with BCD

With this method above, the authors gave the answer for second question in the first sec-
tion.Also, the authors present some examples to show its effectiveness and efficincy.

3 Discussions

According to the introduction and analysis, as the authors declared the major contribution of
this work is the new framework for unsupervised domain adaptation between joint distributions.
However, there are some concerns from me: (a) The theorem holds based on many assumptions,
then, will it limit the application in other practical problem? Or which kinds of problem, this
approach can preform well. Since the difference between the source and target domain is
supposed to be small, how could we determine it ‘small enough’? (b) It seems that the BCD
method relies on the initial guess of f . Does f0 matter or not? If yes, how to get a good initial
f0. (c) When I try to repeat the proof of theorem in that paper, I don’t go smoothly for formula
(20) in Appendix section D in [1]. It looks like we can’t get it from inequality (19).
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