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1 Introduction

Brenier’s polar factorization theorem is a factorization theorem for vector valued functions on
Euclidean domains, which generalizes classical factorization results like polar factorization of
real matrices and Helmotz decomposition of vector fields.

Theorem 1.1 (Brenier’s polar factorization theorem). [1] Given a probability space pX,µq and a
bounded domain Ω in Rd equipped with the Lebesgue measure |¨| (normalized so that |Ω| “ 1) 1 for
every vector-valued function u P LppX,µ;Rdq there is a unique “polar factorization” u “ ∇ψ˝s,
where ψ is a convex function defined on Ω and s is a measure-preserving mapping from pX,µq
into pΩ, |¨|q, provided that u is nondegenerate, in the sense that µpu´1pEqq = 0 for each Lebesgue
negligible subset E of Rd.

The proof is obtained by using a proper Monge-Kantorovich problem.
McCann generalized Brenier’s factorization theorem to functions on Riemannian manifolds.

The statement is as follows:

Theorem 1.2 ([2]). Let M be a connected compact Riemannian manifold. Let s : M Ñ M be
a Borel map which never maps positive volume into zero volume. Then s factors uniquely into
the form s “ t ˝ u, where

u : M ÑM is a volume preserving map and

t “ expp∇ψq : M ÑM

where ψ is a “convex” function ψ : M Ñ R.

Here, the definition of convexity is more technical. Let c : M ˆM Ñ R be a function.
A function ψ : M Ñ R is called c-concave if ψpyq “ infxPM cpx, yq ´ ψpxq for each y P M . A
c-convex function is a real valued function on M whose negative is c-concave. For the statement
above, we take c “ d2px, yq{2 where d is the Riemannian distance. The proof of Theorem 1.2 is
still obtained through a Monge-Kantorovich problem, but now in a more general setting.

In the following sections, we review Monge and Kantorovich problems and then give the
idea of the proof of the factorization theorem.

1under additional technical assumptions on X and Ω
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2 Monge problem

Let pX,µq, pY, νq be measure spaces. Let c : X ˆ Y Ñ Rě0 be a function. In the setting of
optimal transportation, we interpret these as follows:

• X as the collection of distributors where the amount of material that each distributor has
is determined by µ. More precisely, the distributor x P X has dµpxq material.

• Y as the collection of receivers where the amount each receiver needs is determined by ν,
i.e. the receiver y needs dµpyq material.

• cpx, yq is the cost of transporting one unit material from x to y.

Definition 1. A transportation map from X to Y is a measurable map G : X Ñ Y such
that the pusforward measure G˚pµq “ ν. In other words for each measurable set U P Y ,
νpUq “ µpG´1pUqq.

The interperation of a transportation map is follows: if Gpxq “ y then all materials of the
distributer x should be sent to the recevier y. The pusforward condition guarantees that each
y P Y receives exactly the amount it needs (note that pushforward along G can be interpreted
as summation/integration over each fiber of G). The total cost of such transportation should
be the sum of individual costs, where the cost of sending all material of the distributor x to
Gpxq is cpx,Gpxqqdµpxq. Therefore, we give the following definition:

Definition 2. The total cost of a transportation plan G : X Ñ Y is defined by

CpGq :“

ż

X
cpx,Gpxqqdµpxq.

The Monge problem is finding the cost minimizing transportation plan. Such a plan is called
a Monge solution. Existence and uniqueness of a Monge solution depends on the properties of
the individual cost function c : X ˆ Y Ñ R.

3 Kantorovich problem

Note that a transport plan does not allow a distributor to distribute its material among different
receivers. In the Kantorovich setting this is allows. Note that in this case, instead of a map G :
X Ñ Y , one needs a mathematical object γ such that γpx, yq signifies the amount transported
from x to y, and this distribution should be such that summing over x should give dνpyq (hence
y gets what it needs) and summing over y should give dµpxq (hence x distributes everything it
has). The mathematical object fitting to this description is called a coupling.

Definition 3. A coupling between pX,µq, pY, νq is a measure γ on X,Y whose pushforward to
X (resp. Y) under the canonical projection map is µ (resp. ν).

Definition 4. A transportation plan from X to Y is a coupling γ between pX,µq, pY, νq.

Note that in this setting, dγpx, yq denotes the amount of material transported from x to
y. The cost of this individual transportation is cpx, yqdγpx, yq. Hence, for the total cost of a
transportation plan we give the following definition:

Definition 5. The total cost of the transportation plan γ is defined by

Cpγq :“

ż

XˆY
cpx, yqdγpx, yq.
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The Kantorovich problem is finding the cost minimizing transportation plan. Such a trans-
portation plan is called a Kantorovich solution.

Remark 3.1. The Kantorovich problem is a relaxation of the Monge problem in the follow-
ing sense: Given a transportation plan G : X Ñ Y , the measure γ :“ pidX ˆ Gq˚pµq is a
transportation plan such that CpGq “ Cpγq. Furthermore, the support of γ is the graph of G.

Remark 3.2. If µ, ν are measures on the Borel sigma algebra, then the collection of transporta-
tion can be considered as a convex subset of a Banach space, namely the dual space of the space
of real valued continuous functions on X ˆ Y with l8-norm. Hence, the possible candidates for
the Kantorovich problem, unlike the candidates for the Monge problem, has a linear structure
which helps in showing existence and uniqueness of solutions. Furthermore, the functional to
be minimized is linear in its inputs for the Kantorovich problem.

A very important aspect of the Kantorovich problem is the following duality (see [3, Section
2.1]:

min
γ coupling between µ,ν

ż

cdγ “ sup
p´u,´vqPLipc

´

ż

X
udµ´

ż

Y
vdν,

where
Lipc “ tpu, vq : u, v are L1, cpx, yq ě upxq ` vpyq@px, yq P X ˆ Y u.

This is called the Kantarovich duality and crucial in obtaining Monge-Kantarovich solutions.

4 Idea of proof of Theorem 1.2

In this section we assume that X is a compact connected Riemannian manifold, Y “ X and
cpx, yq “ d2px, yq{2 where d denotes the Riemannian distance. This cost function, compared
to the cost function given by the distance, is better suited for obtaining a Monge-Kantarovich
solution because of its proper differentiability properties (see [2, Proposition 6]).

Note that when X “ Y are compact connected Riemannian manifolds, a transportation plan
can also be described by a vector field as follows: Let G be a transportation plan G : X Ñ Y .
For each x P X choose a unit speed geodesic αx from x to Gpxq. Let V be the vector field
on X defined by V pxq “ dpx,Gpxqqα1xp0q. Hence, Gpxq “ exppV pxqq. Therefore G “ exppV q.
A question one can ask is the following: Does such a V arise as the gradient of a potential
function? The following theorem answers this question positively and it is the main result
about Monge-Kantorovich problem used in the proof of Theorem 1.2.

Theorem 4.1 (Existence of Monge solutions, uniqueness of Kantorovich solutions). [3, The-
orem 2.9] Let M be an n-dimensional connected compact Riemannian manifold, and µ, ν be
Borel measures on M . Then there is a convex potential function ψ : M Ñ R such that

1. G(x):= expxp∇ψq is a transport map.

2. G is the only transport map arising this way. It solves the Monge problem.

3. The Kantorovich problem has a unique solution.

4. The Kantorovich solution is attained through G.

Hence in this case, the Monge problem and the Kantorovich problem has the same unique
solution.

Now we can start discussing the sketch of the proof of Theorem 1.2.
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Idea of proof of Theorem 1.2. Let µ be the Riemanniam volume measure on M and let ν “
s˚pµq. By Theorem 4.1, there exist a solution t of the Monge problem from pX,µq to pX, νq
which is the exponential of the gradient of a convex potential function ψ : M Ñ R.

Let t˚ be the solution of the Monge problem from pX, νq to pX,µq, whose existence is
guaranteed by Theorem 4.1. Show that t, t˚ are inverses almost everywhere. Let u “ t˚ ˝ s.
Then t ˝ u “ s, µ almost everywhere. Furthermore u˚pµq “ t˚˚s˚pµq “ t˚˚pνq “ µ, hence u is
measure preserving.
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