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1 Introduction

This article is basically summary of two papers [TSZ™15, [PMT17]. In those papers, the authors
argue that curvature and robustness of a network are positively correlated. This implies that one
can measure robustness of a network by computing its curvature. Here, robustness of a network
is not rigorously defined notion. Instead, roughly robustness means the capacity to remain
functional in the face of random perturbations [DMO5]. The second thing we have to clarify
is notion of curvature for networks. Since the classical notion of curvatures for Riemannian
manifolds are not applicable to networks, The authors introduce three generalized notions of
Ricci curvature applicable to networks. Among them, I will especially focus on Ollivier’s Ricci
curvature. After developing argument to claim that robustness and curvature are positively
correlated, the authors compute curvatures of cell complexes to test their hypothesis. It is
already known that the normal gene interaction networks are less robust than their cancerous
analogues [DMO05, WBST12|]. Therefore, if the authors’ claim is true, then curvature of the
cancerous cell networks should be greater than curvature of normal cell networks. Indeed, the
result of experiment is compatible with the guess and supports the authors’ hypothesis.

2 Background

Throughout this article, The term network always means positively edge-weighted finite undi-
rected graphs. Now I review three important notions: curvature, entropy, and robustness.

2.1 Ricci curvature

In this subsection, let me review the notion of Ricci curvature for Riemannian manifolds very
quickly. Suppose M is a Riemannian manifold with metric g. In general, the curvature is a way
of measuring the degree to which the geometry determined by a given Riemannian metric might
differ from that of ordinary Euclidean space. Especially, we are interested in Ricci curvature.
Rather than defining curvature in a rigorous way, let us motivate notion of Ricci curvature in
a more intuitive way.

First, consider 1-dimensional case first. In other words, consider arc length parameterized
smooth plane curve v : I — R2. In this case, x(t) := |y"(t)| is the curvature of the curve at
point 7(¢). But we have more geometric interpretation of this number. Choose arbitrary three
points around the point «(¢) ant draw the unique circle intersecting those three points. If we
move the three points to the point «(t), then the circle also converges to some circle. Then,
the curvature is actually the reciprocal of the radius of the converged circle. Moreover, one
can give positive/negative sign to the x(t). If the converged circle is on the right side of the
tangent vector (), we give + sign to k(t), otherwise give — sign to x(t). Then we have signed
curvature for smooth plane curves.

Second, consider 2-dimensional surface S € R3. Suppose p € S and N(p) is a choice of unit
normal vector to the tangent space 7),S. Let v be a unit vector in 7,S. The pair {v, N(p)}



determines a plane in R? and the intersection of this plane with S gives a unit speed curve 7, (s)
such that 7/, (0) = v. We define k(v) be the signed curvature of 7,(s) at p. Then we are able
to find two unit vectors vy and v in 7),S making x(vi) = k1 as maximum and k(v2) = Ko as
minimum by Euler’s theorem. The Gaussian curvature of S at p is defined by: K(p) := K1ko.

Finally, consider general n-dimensional Riemannian manifold M. For each point p € M,
T,M is n-dimensional vector space. Then, for arbitrary 2-dimensional subspace o of T, M, we
can define sectional curvature K,(0) by using the exponential map and emulating the defi-
nition of the Gaussian curvature. Finally, for each unit vector v € T, M, construct orthonormal

basis {w1, wa, ..., w, = v}. Then the Ricci curvature of v is defined by:
1 n—1
Ricps(v) = — Z; Kp(span{fw;,wp}).
2.2 Entropy

Consider arbitrary measure p of Riemannian manifold M. Then, the Boltzmann entropy of
w is defined as follows:

Ent(p) := — JM plog pdvolyy,

where voly; is the standard Riemannian volume measure and p = du/dvoly, is the Radon-
Nikodym derivative. Roughly, Boltzmann entropy measures how much “uniform” the measure
is.

2.3 Robustness

As I already mentioned in the introduction, robustness of a network is the capability to remain
functional in the face of random perturbations [DMO5, PMT17]. Since it is not mathematically
defined notion, robustness is measured empirically. For example, [HMJT00] shows yeast cells
can maintain their function after gene deletions by doing experimental perturbation studies in
yeast cells. Another example is that Computational analysis of network observables under node
deletion [AJBOO].

3 Positive correlation between Robustness and Curvature

The theoretical main contribution of [TSZ'15, PMT17] is the claim that robustness and curva-
ture of a network are positively correlated. The authors support their claim by using following
argument. First, they argue that curvature and entropy are positively correlated. Next, they
argue that entropy and robustness are postively correlated. Then, finally one can say robustness
and curvature are positively correlated.

First, consider relationship between curvature and entropy. It is well known that a metric
space (X,dx) is a compact length space if and only if Py(X) := (P(X),Ws) is a compact
length space [LV09, [Stu06]. Hence, one can consider geodesics in P>(M) when M is a compact
Riemannian manifold. Moreover, Lott, Sturm, and Villani discovered following connection
between Ricci curvature and entropy [LV09, [Stu06]: Ricy(v) > k|v|? for any v € TM if and

only if
t(1—1)
2
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where (u)o<i<1 is the 2-Wasserstein geodesics between pg and py in Po(M). This inequality
indicates the positive correlation between entropy and curvature.

Ent(u:) = (1 —t) Ent(puo) + t Ent(p1) + &

AEnt x ARic > 0.



Second, in [DGO04, DMO05|, the authors claimed that entropy and robustness of a network
are positively correlated by invoking theory of large deviations and suggesting some computa-

tional results. Hence we also get:
AEnt x AR > 0.

Therefore, one can conclude that there is a positive correlation between robustness and
curvature.

AR x ARic = 0.

4 Three generalized notions of the Ricci curvature

However, still we don’t have any notion of curvature for networks. Hence, the author introduce
three generalized notion of curvature. Of course, all of them are applicable to networks.

e Ollivier-Ricci curvature are defined for metric spaces with Markov chain structure, or
metric measure spaces. For networks, we will get curvature value kor(z,y) € R for each
edge zy.

° Bakry—]:]mery Ricci curvature are defined for graphs. We will get curvature value
kprr(z) € R for each vertex x.

e Forman-Ricci curvature are defined for CW-complexes. For networks, we will get
curvature value krg(e) € R for each edge e.

In this article I only focus on Olliver’s Ricci curvature because it is most understandable and
also involves Wasserstein distance in its definition. To motivate Olliver’s definition, we have to
know following theorem first.

Theorem 1 [uRS05] For any compact connected Riemannian manifold M and k € R, the
following properties are equivalent:

1. Ricps(v) = k|v|? for any ve TM
2. The normalized Riemannian uniform distribution on balls
My (A) := volpyr (A N B(x,r))/voly (B(z, 1))

satisfies the asymptotic estimate

k

m7“2 +o(r?)) - duy(z,y)

Wl(mr,ma my,r) < (1 -

where dyr is the geodesic distance and the error term is uniform with respect to x,y € M.

In particular, if £ > 0, small balls are closer in transportation distance than their centers
are. Following this line of ideas, we can define Ollivier-Ricci curvature.

Definition 4.1 (Ollivier-Ricci curvature) [OllI09] Let (X, dx) be a metric space with a Markov
chain mx. Let x,y € X be two distinct points. The coarse Ricci curvature of (X,dx, mx)
along (zy) is:

Wi (’I’)’LX(Z‘, ')7 mX(ya )) .

k =1
OR(xa y) dX(SC, y)



Observe that if the Wasserstein distance between mx (z,-) and mx/(y,-) are smaller then
dx(z,y), then we have positive Ollivier-Ricci curvature, just like the case of classical Ricci
curvautre.

Now, how can we apply this definition to the networks? As I already mentioned, a network
G = (V,E) is a positively edge-weighted finite undirected graph. For each x,y € V, define
mx(z,y) = S where wy, is the weight on edge (xy). Then G has a Markov chain
structure. Also, the metric on G is usual graph metric, which is the number of edges in the
shortest path.

5 Curvatures of cell complexes

Now we are ready to test the authors’ claim. It is already well known that the normal gene
interaction networks are less robust than their cancerous analogues [DMO05, WBST12]. I think
this is intuitively natural result. Since cancerous tissues are already “broken”, it will still
function as cancer even after some deletions or changes of some of critical genes. To check
the validity of the hypothesis: curvature and robustness are positively correlated, the authors
computed three curvatures for cell complexes. But before discussing the result of experiments,
let’s clarify what cell complexes are first.

We will consider seven kinds of cancer types. Breast, Head/Neck, Kidney, Liver, Lung,
Prostate and Thyroid cancers. For each cancer type, the authors used normal tissue and can-
cerous tissue data from 3000 samples. Then, we will have networks, depending on types and
normal/cancerous. The vertices of the networks consist of 500 cancer related genes. The edges
are weighted by correlation values of gene-to-gene expressions. More precisely, let’s denote the
correlation value between gene A and B by Corr(A, B). This is some real number between 1
and —1. To make positive weight, we use %’W as the weight between gene A and gene
B. Here, expression value of a gene is biological notion and it measures activity of genes.

The authors computed all three kinds of curvatures for those cell networks. This is the
result.

1. All three generalized curvatures have higher values in the seven cancer networks to the
normal ones. Hence, the result is consistent with the authors’ hypothesis.

2. There are a few common top ranked genes in breast cancer. One can guess that those
genes are most contributing for the “robustness” of the the cell complexes. Especially,
there are three genes, SDHB, EPS15, and ERG found among the top ranked genes with
respect to all three FR, BER and OR curvatures.

3. A number of genes have known clinical implications with regards to breast cancer. For
example, EPS15 plays a crucial role in the degradation of growth factor receptions. It is
reported that over-expression of EPS15 is significantly associated with a favorable clinical
outcome. Also, SDHB gene is another known tumor suppressor. Both genes are top ranked
genes with respect to all three kinds of curvatures. So, maybe we can use curvatures to
find target genes for clinical applications.

4. However, there are some important cancer-related gene mutations known to play a signif-
icant role in breast cancer such as BRCA1 and BRCA2 which are not ranked among the
top ranked genes.
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