
Report for CSE 5339 2018 — (OTMLSA)

Optimal Transport in Machine Learning and Shape Analysis

Fast Image Retrieval via Embeddings

Tim Carpenter

1 Introduction

The central question this paper addresses is how to build a data structure that quickly identifies
the images that are closest to a query image. The authors note that early work represents images
as points in multidimensional space, and uses a norm to define the distances between points. To
improve the quality of the results, a variety of other metrics (such as the Earth Movers Distance
(EMD)) were proposed [RTG00], but for unnormed metrics like EMD, nearest neighbor data
structures such as kd-trees or R-trees cannot be used.

The main contributions of Indyk and Thaper in [IT03] is a “low distortion” embedding of
EMD into Rd with the `1 norm, and a data structure to solve approximate nearest neighbor on
this space.

2 Definitions

The follow definitions and assumptions are made in the description of the embedding algorithm.

• Let P,Q � Rk be two point sets of cardinality s, and V � P YQ.

• Assume that the smallest inter-point distance is 1, and let ∆ be the diameter of V .

• For any pair p P P, q P Q, the weight of pp, qq is the Euclidean distance between p and q.

• The EMD metric DM pP,Qq is the cost of the minimum weight edge matching in the
bipartite graph consisting of all edges between points in P and Q.

3 Embedding into `1

The embedding from Rk into `1 is constructed by the following steps:

1. Impose grids on Rk of side lengths 1
2 , 1, 2, 4, . . . , 2

i, . . . ,∆. Let Gi be the grid of side length
2i.

2. Translate each grid by a vector chosen uniformly at random from r0,∆sk.

3. For each Gi, construct a vector vipP q with one coordinate per cell, where each coordinate
counts the number of points in the corresponding cell.

4. Define an embedding f by setting fpP q to be the vector

v�1pP q{2, v0pP q, 2v1pP q, 4v2pP q, . . . ,∆vlog ∆pP q

1

Two properties of this embedding should be immediately clear. First, vpP q is an Op∆kq-
dimensional vector. Second, vpP q has only Oplogp∆q � |P |q entries. The distortion of this
embedding is bounded by the following two Lemmas.

Lemma 3.1 For k � 2, there is a constant C such that for any P,Q, we have DM pP Qq ¤
C � |vpP q � vpQq|1.

Lemma 3.2 For k � 2, there is a constant C such that, for a fixed pair P,Q, if we shift the
grids randomly, then the expected value of |vpP q � vpQq|1 is at most C �DM pP,Qq log ∆.

The proof of these Lemmas follow by considering an optimal matching on the point sets,
and comparing this matching to the matching induced by the grid structure imposed onRk.

Due to the high dimension of the embedding space, standard techniques for finding nearest
neighbors would be too time consuming to use, and so they authors devise a scheme using
locality sensitive hashing.

4 Nearest Neighbor in high dimension `1 space

To find the nearest neighbor in high-dimension `1 space, the authors use a data structure solving
the pR, cq-PLEB problem.

Definition 4.1 (pR, cq-PLEB Problem) Given n radius R balls centered at P � tp1, . . . , pnu
in M � pX,Dq, devise a data structure which for any query point q P X does the following:

• if there exists p P P with q P Bpp,Rq then return YES and a point p1 P P such that
q P Bpp1, cRq,

• if q R Bpp, cRq for all p P P then return NO,

• if for the point p closest to q we have R ¤ Dpp, qq ¤ cR then return either YES or NO.

pR, cq-PLEB is a decision version of the approximate Nearest Neighbor (NN) problem. Using
a binary search based approach, when c � 1 � ε the approximate NN problem can be reduced
to Oplogpn{εqq instances of pR, cq-PLEB. One way to do this [IM98]:

1. Let Π be the ratio between the largest and smallest inter-point distances in the pointset
tp1, p2, . . . , pnu.

2. For each ` P tp1�εq0, p1�εq1, . . . ,Πu generate a sequence of balls B`
1, B

`
2, . . . , B

`
n of radius

` centered at p1, p2, . . . , pn.

3. Given a query q, use binary search to find the minimal ` such that q P B`
i and return pi

as an approximate nearest neighbor.

This method is simple, but the authors improve on it by using locality sensitive hashing (LSH).

Definition 4.2 (LSH Family) For a domain S with distance measure D, a family H � th :
S Ñ Uu is called pr1, r2, p1, p2q-sensitive for D if for any v, q P S

• if v P Bpq, r1q then PrHrhpqq � hpvqs ¥ p1,

• if v R Bpq, r2q then PrHrhpqq � hpvqs ¤ p2.

A useful LSH family will satisfy p1 ¡ p2 and r1 r2. If we have a method of generating useful
LSH families, we can apply the following Theorem to solve the PLEB, an therefore approximate
NN, problem.

2

Theorem 4.3 Suppose there is a pR, cR, p1, p2q-sensitive family H for a distance measure D.
Then there exists an algorithm for pR, cq-PLEB under measure D which uses Opdn�n1�ρq space,
with query time dominated by Opnρq distance computations, and Opnρ log1{p2 nq evaluations of

hash functions from H, where ρ � ln 1{p1
ln 1{p2

.

To find useful LSH families, we can use p-stable distributions.

Definition 4.4 A distribution D over R is called p-stable if there exists p ¥ 0 such that for
any n real numbers v1, . . . , vn and i.i.d. variables X1, . . . , Xn with distribution D, the random
variable

°
i viXi has the same distribution as the variable p

°
i |vi|

pq1{pXi, where X is a random
variable with distribution D.

It is known that p-stable distributions exists for any p P p0, 2s. For example, the Cauchy
distribution defined by the density function cpxq � 1

πp1�x2q
is 1-stable. We define hash functions

from Rd to N in the following way. For v P Rd, let ha,bpvq � ta.v�br u, where

• a is a d-dimensional vector with entries chosen independently from a p-stable distribution,

• b is a real number chosen uniformly from the range r0, rs,

• r is a real number.

5 Experiments

To evaluate their image retrieval algorithm, the authors implemented and tested it on a col-
lection of 20,000 color images from the Corel Stock Photo Library. The images were first
transformed into the CIE-Lab color space.

5.1 Implementation

The authors identified the following issues that came when implementing their algorithms

`1 embedding. The embedding process described by the authors is randomized, and in par-
ticular the low-distortion guarantee is only in expectation. To increase the probability of getting
good results, the authors compute 5 embeddings. This increases the query time by a factor of
5, but the authors note that their algorithm is still significantly faster than a linear scan. It
also causes a 5-fold increase in the amount of space needed, but due to the sparse nature of the
the embedding and the memory use being less important than the retrieval time this is not a
problem.

p-stable LSH. To keep low the number of random bits needed to represent the hash functions,
the authors use the following approach.

• For each hash function gj , store one random variable rj .

• For each index i, let uji � pirj mod pq{p for some large prime p.

• For each uji, let aji � tanpπpuji � 1{2qq.

• For hash function gj � phj1, hj2, . . . , hjkq, hji is defined using aji.

Furthermore, since the number of buckets in each hash function may be large, the buckets
are compresses using another layer of hashing.

3

Parameter setting. The algorithm described by the authors has 3 parameters to set; the
number of projections per hash value (call this k), the umber of hash tables (l), and the width
of the projection (r).

The authors note that as the value of k is increased, the probability of two points colliding
decreases exponentially (false positives), but it also increases the probability that near neighbors
are placed in different buckets by the hash function (false negatives). Increasing l decreases the
number of false negatives, and decreasing r decreases the number of false positives. Therefore
k, l, and r should all be tuned together. For values of k, the optimal value of l can be computed
directly. Through experiments on different values of k and r, the authors settled on k � 6 and
r � 5.0 as giving the best tradeoff between query time and result correctness.

5.2 Experimental results

In their results, they measure the retrieval time and the accuracy of the answer, compared to
the answers of a linear scan.

The first set of experiments was on 100 randomly selected query images. For their algorithms,
the authors used parameters k � 6 and r � 5.0. In this experiment, the average speedup (and
median) over the naive EMD computation and linear scan was 90 (resp. 59). Here the median
rank of the images retrieved was 3.

In these experiments, for some of the images the rank of the retrieved image is very high
(for example, in one case the retrieved image had rank 204). The authors examined the rank
204 case, and found that for all values of c, the query image had a particularly large number of
c-approximate nearest neighbors compared to the other query images.

The second set of experiments conducted by the authors, they tested the effect the number
of images in the database affects query time by varying the number of images from 5,000 to
20,000. These experiments demonstrates that that the embedding algorithm scales much better
than the naive EMD computation and linear scan.

References

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbor: toward removing the curse
of dimensionality. Proceeding of the Symposium on Theory of Computing, 1998.

[IT03] P. Indyk and N. Thaper. Fast Image Retrieval via Embeddings. In 3rd Intl Wkshp on
Statistical and Computational Theories of Vision, Nice, France, 2003.

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The Earth Mover’s Dis-
tance as a Metric for Image Retrieval. Int. J. Comput. Vision 40, 2 (November 2000),
99-121. DOI: https://doi.org/10.1023/A:1026543900054

4

	Introduction
	Definitions
	Embedding into 1
	Nearest Neighbor in high dimension 1 space
	Experiments
	Implementation
	Experimental results

