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1 DMotivation and Related Work

The tools developed in Topological data analysis are built upon persistence homology theory,
and their main output is a descriptor called persistence diagram (PD), which encodes the
topology of a space at all scales in the form of a point cloud with multiplicities in the plane R2.
PDs enjoy strong stability properties. However, they do not live in a space naturally endowed
with a Hilbert structure and are usually compared with non-Hilbertian distances, such as the
bottleneck distance. One approach to tackle this issue is to make use of the "kernel trick” by
using a positive-definite kernel in order to map the persistence diagrams into a Hilbert space.
A series of recent contributions have proposed kernels for PDs. One class of methods defines
implicitly feature maps by focusing on building kernels for PDs. For instance, Reininghaus et
al. (2015) use solutions of the heat differential equation in the plane and compare them with
the usual L?(R?) dot product. Kusano et al. (2016) handle a persistence diagram as a discrete
measure on the plane, and follow by using kernel mean embeddings with Gaussian kernels.
Both kernels are provably stable, in the sense that the metric they induce in their respective
reproducing kernel Hilbert space (RKHS) is bounded above by the distance between persistence
diagrams. More generally, one of the reasons why the derivation of kernels for persistence
diagrams is not straightforward is that the natural metrics between persistence diagrams, the
diagram distances are not negative semi-definite. Indeed, these diagram distances are very
similar to the Wasserstein distance between probability measures, which is not negative semi-
definite. However, a relaxation of this metric called the Sliced Wasserstein distance has been
shown to be negative semi-definite and was used to derive kernels for probability distributions in
Yasuaki. H et al. (2016). In the article ”Sliced Wasserstein distance for persistence diagrams”,
obviously, the authors used the Sliced Wasserstein distance to define a new kernel for persistence
diagrams, which is proved to be both stable and discriminative. Specifically, they provide
distortion bounds on the Sliced Wasserstein distance that quantify its ability to mimic the
diagram distances between persistence diagrams.

2 Background

2.1 Persistent Homology

Persistent homology is an algebraic method for measuring topological features of shapes and
functions. Given f: X — R as input, persistent homology outputs a planar point set with
multiplicities, called the persistence diagram of f and denoted by Dg(f). To understand the
meaning of each point in this diagram, it suffices to know that, to compute Dg(f), persistent
homology considers the family of sublevel sets of f, i.e. the sets of the form f~!((—co,t]) for
t € R, and it records the topological events (e.g. creation or merge of a connected component,



creation or filling of a loop, void, etc.) that occur in f~1((—o0,t]) as ¢ ranges from —oo to +o0.
Then, each point p € Dg(f) represents the lifespan of a particular topological feature (connected
component, loop, void, etc.), with its creation and destruction times as coordinates.

Distance between persistence diagrams. We now define the pth diagram distance be-
tween persistence diagrams. Let p € N and Dg;, Dgs be two persistence diagrams. Let
I Dg1 2 A — B < Dgs be a partial bijection between Dg; and Dgo. Then, for any point x € A,
the p-cost of z is defined as ¢p(x) = || — I'(2)||%,, and for any point y € (Dg1 b Dg2)\(A u B),

the p-cost of y is defined as c;(y) = |ly — ma(y)||,, where 7 is the projection onto the diagonal

A = {(z,z) : v € R}. The cost ¢,(I') is defined as : ¢,(I') = (2, ep(2) + 2, c;,(y))l/p. We then
define the pth diagram distance d, as the cost of the best partial bijection:

dy(Dg1,Dgz) = irrlf cp(T).

In the particular case p = +00, the cost of I' is defined as ¢(I') = max{max, ¢;(z) +max, ¢; (y)}.
The corresponding distance dy, is often called the bottleneck distance. One can show that
d, — do when p — 400. A fundamental property of persistence diagrams is their stability
with respect to small perturbations of their originating functions. Indeed, the stability theorem
asserts that for any f,¢g: X — R, we have

dw(Dg(f), Dg(9)) < IIf = gllos - (1)

In practice, persistence diagrams can be used as descriptors for data via the choice of appropriate
filtering function f, e.g. distance to the data in the ambient space, eccentricity, curvature, etc.

2.2 Kernel Methods

Positive Definite Kernels. Given a set X, a function k£ : X x X — R is called a positive
definite kernel if for all integers n, for all families x4, ..., 2, of points in X, the matrix [k(x;, x;)]i ;
is itself positive semi-definite. For brevity, positive definite kernels will be referred as kernels.
It is known that kernels generalize scalar products, in the sense that, given a kernel k, there
exists a Reproducing Kernel Hilbert Space (RKHS) #H and a feature map ¢ : X — Hj, such that
k(x1,22) = {p(x1), p(x2))3n,. A kernel k also induces a distance dj on X that can be computed
as the Hilbert norm of the difference between two embeddings:

def.
di(xl,@) =f k(wl,xl) + k‘(xg,.%'g) — 2]{?(1‘1,:62).

Negative Definite and RBF Kernels. A standard way to construct a kernel is to exponenti-

ate the negative of a Kuclidean distance. Indeed, the Gaussian kernel for vectors with parameter

2
o > 0 does follow that template approach : k,(x,y) = emp(—%). An important theorem of

Berg et al. (1984) (Theorem 3.2.2, p.74) states that such an approach to build kernels, namely
setting
def.
bio(2,9) " eap(— L)
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for an arbitrary function f can only yield a valid positive definite kernel for all & > 0 if and
only if f is a conditionally negative definite function, namely that, for all integers n, for all
x1,....,on € X, and for all ay,...,a, € R such that ), a; = 0, one has Zij a;a; f(z;, xj) <O.

2.3 Wasserstein distance for unnormalized measures on R

The Wasserstein distance is a distance between probability measures. In the article, the authors
focus on a variant of that distance: the 1-Wasserstein distance for nonnegative, not necessarily
normalized, measures on the real line. Let p and v be two nonnegative measures on the real



line such that |u| = p(R) and |v| = v(R) are equal to the same number r. Let’s define the three
following objects:

Wi v) = inf f f & — y|P(dz, dy) @)
) = [ I ) = N @) 3)

Lp, v) = f(@)[p(dz) = v(dz)] (4)

inf
fel —szschztz R

where II(p,v) is the set of measures on R? with marginals x4 and v, and M~! and N~! the
generalized quantile functions of the probability measures p/r and v/r respectively.

Prposition 2.1. W = Q, = £. Additionally (i) Q, is conditionally negative definite on the
space of measures of mass r; (ii) for any three positive measures u,v,~y such that |u| = |v/,
we have L(u + v,v + ) = L(u,v). Proof. The equality between (2) and (3) is known for
probability measures on the real line - see Proposition 2.17 in [36] for instance, and can be
trivially generalized to unnormalized measures. The equality between (2) and (4) is due to the
well known Kantorovich duality for a distance cost which can also be trivially generalized to
unnormalized measures, which proves the main statement of the proposition. The definition
of Q, shows that the Wasserstein distance is the [; norm of rM~! — rN~! and is therefore
conditionally negative definite (as the /1) distance between two direct representations of p and
v as functions rM ! and »rN~!, proving point (i). The second statements is immediate.

3 The Sliced Wasserstein Kernel

3.1 The Sliced Wasserstein Kernel

A new kernel between persistence diagrams, called the Sliced Wasserstein kernel, can be defined
based in the Sliced Wasserstein metric. The idea underlying this metric is to slice the plane with
lines passing through the origin, to project the measures onto these lines where WV is computed,
and to integrate those distance over all possible lines.

Definition 3.1. Given 0 € R? with [|f]|, = 1, let L(¢) denote the line {\0 : A € R}, and
let mp : R? — L(0) be the orthogonal projection onto L(#). Let Dgi, Dgs be two persistence
diagrams, and let uf = YpeDg) gy and pin = YpeDgy Omgoma (p)» and similarly for 14, where
me is the orthogonal projection onto the diagonal. Then, the Sliced Wasserstein distance is
defined as:

de 1
SW(Dg1, Dgs) o = f W + pba, 18+ pfn) o

Note that, by symmetry, once can restrict on the half-circle [-F, 7] and normalize by 7 instead

of 2.
Lemma 3.2. Let X be the set of bounded and finite PDs. Then, SW is negative semi-definite
on X.
Proof. Let n € N*,aq,...,a, € R such that )}, a; = 0 and Dy, ..., Dg, € X. Given 1 <i < n, we



70— 0 n0 -
let i := pi + DgeDgy ki Orgomala)s Hija = 2ipeDgy ki Omgoma(p) a0d d =3 [Dgil. Then,

DraiagW (il + pas 1 + pia) = aia L(uf + pha, 1§ + pis)

2%
0, 0 -6 0, 0 ~6
= Zaiajﬁ(ui + GA + Bijas g+ A + ija)
i?j
~0 ~0 -0 ~0
= Zaiajﬁ(#iaﬂj) = Zaiajgd(ﬂiv“j) <0
ivj Z’-]

The result follows by the linearity of integration.
Hence, the theorem of Berg et al.(1984) allows us to define a valid kernel with:

kisw (Dg1, Dgy) & eap (— S De Lez))
Then, we have the main theoretical result of the article, which states that SW is equivalent to
dy.
Theorem 3.3. Let X be the set of bounded PDs with cardinalities bounded by N € N*. Let
Dg1,Dgo € X. Then, one has:

% < SW(Dgi, Dgs) < 2v/2d1(Dg1, Dga)

where M =1+ 2N(2N —1)

Proof. Let s : Dg; U ma(Dgs) — Dgo U ma(Dg1) be the one-to-one bijection between Dg; U
7a(Dg2) and Dgy U ma(Dgy) induced by W(uf + p§a, 1§ + 1§ ,), and let s be the one-to-one
bijection between Dg; uma(Dgs) and Dgs U ma(Dg) induced by the partial bijection achieving

di1(Dg1, Dg2)
Upper bound. Recall that ||0]], = 1. We have:

W + a1 + pia) = D Kp = 5% (p), 0))

<D Kp=s),0l <D lIp— s,
< V2 Ip - 5(p) o < 2v2d1(Dg1, Dygs),

where the sum is taken over all p € Dg; U ma(Dgs). The upper bound follows by linearity.
Lower bound. The idea is to use the fact that s? is a piecewise-constant function of 6, and that

it has at most 2 + 2N (2N — 1) critical values Oy, ..., Oy in [-7F, T]. Indeed, it suffices to look

at all @ such that (p; — pa,8) = 0 for some p1,py in Dg; U TA(Dgs) or Dgs U wa(Dg1). Then:
Oi41
| Sk = L0000 = o - s o) j lcos(Z(p — s (p),6))|d6
> Slo- 0,020
2 2m
di(Dgy, D
> (@111 — 0))2 1( 217; 92)

where the sum is again taken over all p € Dg; Uma(Dga) and where the inequality used to lower
bound the integral of the cosine is obtained by concavity. The lower bound follows then from
the linearity and the Cauchy-Schwarz inequality.

3.2 Computation

Approximate computation. In practice, An algorithm is proposed to approximate kgy in
O(Nlog(N)) time.



Algorithm 1: Approximate computation of SW

Input: Dg; = {p}, - ,pj, }, Dgs = {p1,--- , P}, }, M.
Add wa(Dgq) to Dg, and vice-versa.
Let SW =0; 0 = —n/2; s = /M,
fori:=1,---,M do
Store the products (p;,6) in an array Vi;
Store the products (p7,6) in an array V5;
Sort V7 and Vs in ascending order;
SW = SW + s||V1 — V3|1;
0 =0+s;
end for
Output: (1/7)SW;
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