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Abstract

The distance between point and measure was introduced by Chazal, Cohen-Steiner and
Mérigot, which is robust with respect to noise and outliers and can be used in the offset
method to infer geometry and topology knowledge of point clouds. To distinguish samples
from different metric measure spaces, DTM-signature was introduced by Brécheteau to build
an asymptotic statistical test, which is of level α for chosen small parameter α.

1 Distance to the Measure

Data is often of the form of a point cloud sampled from an unknown Euclidean space. Here is
a basic problem regarding geometric inference of data:

Question 1.1 Given a noisy point cloud approximation C of a compact set K Ă Rd, how can
we recover geometric and topological informations about K, such as its curvature, boundaries,
Betti numbers, etc. knowing only the point cloud C?

One idea to retrieve information of a point cloud is to consider the R-offset of the point
cloud - that is the union of balls of radius R whose center lie in the point cloud.

This offset makes good estimation of the topology, normal cones, and curvature measures
of the underlying object, shown in previous literature.

The main analyzing tool used is a notion of distance function: for a compact K Ă Rd,
we define

dK : Rd Ñ R
x ÞÑ distpx,Kq

This function is good with the following properties, which are essential to geometric inference:

1. dK is 1-Lipschitz.

2. d2K is 1-semiconcave.

3. ‖dK ´ dK1‖8 ď dHpK,K
1q.

Unfortunately, offset-based methods do not work well at all in the presence of outliers. For
example, the number of connected components will be overestimated if one adds just a single
data point far from the original point cloud. This problem arises from the fact that Hausdorff
distance is sensitive to outliers.

To reduce the influence by outliers, it’s natural to introduce measure on metric spaces and
consider the Wasserstein distance. In [2], the authors replaced the distance function to a set K
by a distance function to a measure. Inspired by the formula dKpxq “ minyPK ‖x´ y‖ “
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mintr ą 0 : Bpx, rq X K ‰ Hu, a notion of pseudo-distance function arises when given a
measure µ on Rd:

δµ,m : x P Rd ÞÑ inftr ą 0;µpB̄px, rqq ą mu,

which is 1-Lipschitz but not semi-concave. With the help of this pseudo-distance function, we
arrive at the definition of distance to a measure:

Definition 1.2 (Distance to a Measure) For any measure µ with finite second moment and
a positive mass parameter m0 ą 0, the distance function to measure (DTM) µ is defined by the
formula:

d2µ,m0
: Rn Ñ R, x ÞÑ

1

m0

ż m0

0
δµ,mpxq

2dm.

Example 1.3 Let C “ tp1, ¨ ¨ ¨ , pnu be a point cloud and µC “
1
n

ř

i δpi. Then function δµC ,m0

with m0 “ k{n evaluated at x P Rd equal to the distance between x and its kth nearest neighbor
in C.

Given S Ă C with |S| “ k, define VorCpSq “ tx P Rd : @pi R S, dpx, piq ą dpx, Sq.u, which
means its elements take S as their k first nearest neighbors in C.

@x P VorCpSq, d
2
µC ,

k
n

pxq “
n

k

ÿ

pPS

‖x´ p‖2 .

Here is a duality like formulation of DTM, which lies in the heart of proof of stability theorems.

Proposition 1.4 1. DTM is the minimal cost of the following problem:

dµ,m0pxq “ min
µ̃

 

W2

`

δx,
1

m0
µ̃
˘

; µ̃pRdq “ m0, µ̃ ď µ
(

2. Denote the set of minimizers as Rµ,m0pxq. Then for each µ̃x,m0 P Rµ,m0pxq,

• supppµ̃x,m0q Ă B̄px, δµ,m0pxqq;

• µ̃x,m0

ˇ

ˇ

Bpx,δµ,m0 pxqq
“ µ

ˇ

ˇ

Bpx,δµ,m0 pxqq
;

• µ̃x,m0 ď µ.

3. For any µ̃x,m0 P Rµ,m0pxq,

d2µ,m0
pxq “

1

m0

ż

hPRd
‖h´ x‖2 dµ̃x,m0 “W 2

2

´

δx,
1

m0
µ̃x,m0

¯

.

Remark 1.5 According to this proposition, we can regard DTM as the Wasserstein distance
between point mass measure and localized measure in a ball with radius related to the pseudo-
distance function.

The following two theorems show that DTM is as good as the distance function to the set.
These properties play a key role in the geometric and topological inference of data using the
offset method.

Theorem 1.6 (Regularity) 1. d2µ,m0
is semiconcave, which means ‖x‖2´ d2µ,m0

is convex;

2. d2µ,m0
is differentiable at a point x iff supppµq X BBpx, δµ,m0pxqq contains at most 1 point;

3. dµ,m0 is 1-Lipschitz.

Theorem 1.7 (DTM stability theorem) If µ, ν are two probability measures on Rd and
m0 ą 0, then

‖dµ,m0 ´ dν,m0‖8 ď
1

?
m0

W2pµ, νq.
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2 Offset Reconstruction

Lemma 2.1 If µ is a compactly-supported measure, then dS is the uniform limit of dµ,m0 as
m0 converges to 0, where S “ supppµq, i.e.,

lim
m0Ñ0

‖dµ,m0 ´ dS‖8 “ 0.

Remark 2.2 If µ has dimension at most k ą 0, i.e. µpBpx, εqq ě Cεk,@x P S when ε is
small, then we can control the convergence speed:

‖dµ,m0 ´ dS‖8 “ Opm
1{k
0 q.

If µ is a probability measure of dimension at most k ą 0 with compact support K Ă Rd,
and µ1 is another probability measure, one has∥∥dK ´ dµ1,m0

∥∥
8
ď ‖dK ´ dµ,m0‖8 `

∥∥dµ,m0 ´ dµ1,m0

∥∥
8

ď Opm
1{k
0 q `

1
?
m0

W2pµ, µ
1q.

Here we regard K as the real underlying metric space and µ1 as a noised version of it. Then
we see that DTM is stable with respect to the noise.

The following reconstruction theorem tells that the topological information is preserved by
DTM. First define α-reach of K, α P p0, 1s as rαpKq “ inftdKpxq ą 0 : ‖∇xdK‖ ď αu.

Theorem 2.3 Suppose µ has dimension at most k with compact support K Ă Rd such that
rαpKq ą 0 for some α. For any 0 ă η ă rαpKq, Dm1 “ m1pµ, α, ηq ą 0 and C “ Cpm1q ą 0
such that: for any m0 ă m1 and µ1 satisfying W2pµ, µ

1q ă C
?
m0, d´1µ1,m0

pr0, ηsq is homotopy

equivalent to the offset d´1K pr0, rsq for 0 ă r ă rαpKq.

Figure 1: On the left, a point cloud sampled on a mechanical part to which 10% of outliers have
been added- the outliers are uniformly distributed in a box enclosing the original point cloud.
On the right, the reconstruction of an isosurface of the distance function dµC ,m0 to the uniform
probability measure on this point cloud.

3 DTM signature

In previous sections, we only consider about different measures on Rd, however we can generalize
the notion of DTM to general metric measure spaces without obstruction. In [1], the author
tried to answer the following question: how to determine that two N -samples are from the same
underlying metric measure space?

With the help of DTM constructed before, an asymptotic statistical test was introduced by
using the DTM-signature.
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Definition 3.1 (DTM-signature) The DTM-signature associated to some mm-space pX, δ, µq,
denoted dµ,mpµq, is the distribution of the real valued random variable dµ,mpY q where Y is some
random variable of law µ.

Theorem 3.2 (Stability of DTM-signature) Given two mm-spaces pX, δX , µq, pY, δY , νq, we
have

W1pdµ,mpµq, dν,mpνqq ď
1

m
GW1pX,Y q.

Proposition 3.3 If pX, δX , µq, pY, δY , νq are embedded into some metric space pZ, δq, then we
can upper bound W1pdµ,mpµq, dν,mpνqq by

W1pµ, νq `mint‖dµ,m ´ dν,m‖8,supppµq , ‖dµ,m ´ dν,m‖8,supppνqu,

and more generally by p1` 1
mqW1pµ, νq.

DTM-signature is not discriminative in general, however under some conditions, DTM-
signature is discriminative:

Proposition 3.4 (Discriminative example) Let pO, ‖‖2 , µOq, pO1, ‖‖2 , µO1q be two mm-spaces,
for O,O1 two non-empty bounded open subset of Rd satisfying O “ pŌq˝ and O “ pŌ1q˝, µO, µO1

uniform measures. A lower bound for W1pdµO,mpµOq, dµO1 ,mpµO1qq is given by C|LebdpOq
1
d ´

LebdpO
1q

1
d |, where C depends on m, ε,O,O1, d.

4 Statistical test

Given two N -samples from the mm-spaces pX, δ, µq, pY, γ, νq, we want to build a algorithm using
these two samples to test the null hypothesis:

H0 ”two mm-spaces X,Y are isomorphic”,

against its alternative:

H1 ”two mm-spaces X,Y are not isomorphic”,

The test proposed is based on the fact that DTM-signature associated to two isomorphic
mm-spaces are equal, which leads to W1pdµ,mpµq, dν,mpνqq “ 0.

The idea is described as follows. Given twoN -samples from the mm-spaces pX, δ, µq, pY, γ, νq,
choose randomly two n-samples from them respectively, which gives four empirical measures,
µ̂n, µ̂N , ν̂n, ν̂N . We need to consider the following statistic: TN,n,mpµ, νq “

?
nW1pdµ̂N ,mpµ̂nq, dν̂N ,mpν̂nqq.

Denote the law of TN,n,mpµ, νq as LN,n,mpµ, νq.

Lemma 4.1 If two mm-spaces are isomorphic, then LN,n,mpµ, νq “ LN,n,mpν, νq “ LN,n,mpµ, µq “
1
2LN,n,mpµ, µq `

1
2LN,n,mpν, νq.

Remark 4.2 1
2LN,n,mpµ, µq`

1
2LN,n,mpν, νq is the distribution of ZTN,n,mpµ, µq`p1´ZqTN,n,mpν, νq,

where Z is another independent random variable with Bernoulli distribution.

According to the lemma, we shall use 1
2LN,n,mpµ, µq`

1
2LN,n,mpν, νq to approximate LN,n,mpµ, νq.

The α-quantile qα,N,n of 1
2LN,n,mpµ, µq `

1
2LN,n,mpν, νq will be approximated by the α-quantile

q̂α,N,n of 1
2L
˚
N,n,mpµ̂N , µ̂N q`

1
2L
˚
N,n,mpν̂N , ν̂N q, where α is a chosen small number. Here L˚N,n,mpµ̂N , µ̂N q

stands for the distribution of TN,n,mpµ̂N , µ̂N q “
?
nW1pdµ̂N ,mpµ

˚
nq, dµ̂N ,mpµ

1˚
nqq conditionally to

µ̂N , where µ˚n and µ1˚n are two independent n-samples of law µ̂N , which can be simulated via
bootstrap method. In the end, we will deal with the test:

φN “ 1TN,n,mpµ,νqěq̂α,N,n .

Here is a description of the algorithm for the statistical test:
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Proposition 4.3 (Asymptotic level) For properly chosen n depending on N , for example,

N “ cnρ, with ρ ą maxtd,2u
2 , test is of asymptotic level α, i.e.

lim supNÑ8Ppµ,νqPH0
pφN “ 1q ď α.

Example 4.4 (Numerical example) µv: distribution of pR sinpvRq ` 0.03M,R cospvRq `
0.03M 1q with R,M,M 1 independent variables; M and M 1 from the standard normal distribution
and R uniform on p0, 1q.

Sample N “ 2000 points from two measures (with different v), choose α “ 0.05,m “

0.05, n “ 20, NMC “ 1000.

Figure 2: Left: DTM-signature estimates. Right: Bootstrap validity, v “ 10.

Figure 3: Type 1 error and power approximations by repeating 1000 times. KS represents
Kolmogorov Smirnov test.
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