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I. Introduction

• Motivation
• Optimal transport (OT) defines a powerful framework to compare

probability distributions in a geometrically faithful way.
• Previous works are purely discrete and cannot cope with continuous

densities, The only known class of methods that can overcome this
limitation are so-called semi-discrete solvers.

• In addition, the practical impact of OT is still limited because of its
computational burden

• This paper propose a new class of stochastic optimization algorithms
to cope with large-scale OT problems.
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I. Introduction

• This paper introduces three kinds of stochastic optimization methods 
to cope with three possible settings：

• Discrete OT: compare a discrete vs. another discrete measure
 Stochastic averaged gradient (SAG) method
• Semi-discrete OT: compare a discrete vs. a continuous measure
 Averaged stochastic gradient descent (SGD)
• Continous OT: to compare a continuous vs. another continuous 

measure
 makes use of an expansion of the dual variables in a reproducing 

kernel Hilbert space (RKHS)
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II. Problem Formulation

The definition of joint probability measures
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II. Problem Formulation

The definition of Kullback-Leibler divergence
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II. Problem Formulation
The Kantorovich formulation of OT and its entropic regularization can be 
written in a single convex optimization problem

In which             is the cost to move a unit of mass from x to y( , )c x y
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II. Problem Formulation

Fenchel-Rockafellar’s dual theorem

Solving                                               ,plugging this expression back in  ,( , )0, 0 cF u v u v
u

εεε ∂
> = ⇒ =

∂
( )D ε
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II. Problem Formulation
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III. Discrete Optimal Transport

Stochastic gradient descent (SGD): the gradient of that term can be used as a proxy 
for the full gradient in a standard gradient ascent step to maximize
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III. Discrete Optimal Transport
Stochastic gradient descent (SGD)

Example: For an optimization problem
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When used to minimize the above function, a standard (or "batch") gradient descent 
method would perform the following iterations :
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where    is a step size. However, evaluating the sum-gradient may require expensive 
evaluations of the gradients from all summand functions. To economize on the 
computational cost at every iteration, stochastic gradient descent samples a subset of 
summand functions at every step. This is very effective in the case of large-scale 
machine learning problems.

𝜂𝜂
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III. Discrete Optimal Transport
Stochastic gradient descent (SGD)

In stochastic (or "on-line") gradient descent, the true gradient of is
approximated by a gradient at a single example

𝑄𝑄 𝜔𝜔

( ): iQω ω η ω= − ∇

In pseudocode, stochastic gradient descent can be presented as follows:
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III. Discrete Optimal Transport
Averaged stochastic gradient descent (Average SGD)

Invented independently by Ruppert and Polyak in the late 1980s, is ordinary
stochastic gradient descent that records an average of its parameter vector
over time. That is, the update is the same as for ordinary stochastic gradient
descent, but the algorithm also keeps track of

1
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1 t
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it

ω ω
−

=

= ∑

When optimization is done, this averaged parameter vector takes the place of 𝜔𝜔

Stochastic averaged gradient (SAG): the stochastic average gradient
method with a (user-supplied) constant step size.
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III. Discrete Optimal Transport

Stepsize

Initial gi =0

Update gradient

The flow chat of SAG for discrete OT

Output
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III. Discrete Optimal Transport
Numerical Illustrations on Bags of Word-Embeddings
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IV. Semi-Discrete Optimal Transport

Stepsize

Update output

The flow chat of SGD for discrete OT

Output
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IV. Semi-Discrete Optimal Transport
Numerical Illustrations
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IV. Continuous Optimal Transport
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IV. Continuous Optimal Transport

Stepsize C 
and 
Kernels

Update output

The flow chat of Kernel SGD for discrete OT
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IV. Continuous Optimal Transport
Numerical Illustrations
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Thank You!
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