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|. Introduction

Motivation

Optimal transport (OT) defines a powerful framework to compare
probability distributions in a geometrically faithful way.

* Previous works are purely discrete and cannot cope with continuous
densities, The only known class of methods that can overcome this
limitation are so-called semi-discrete solvers.

 |In addition, the practical impact of OT is still limited because of its
computational burden

« This paper propose a new class of stochastic optimization algorithms
to cope with large-scale OT problems.



|. Introduction

o This paper introduces three kinds of stochastic optimization methods
to cope with three possible settings

e Discrete OT: compare a discrete vs. another discrete measure

» Stochastic averaged gradient (SAG) method

o Semi-discrete OT: compare a discrete vs. a continuous measure
» Averaged stochastic gradient descent (SGD)

e Continous OT: to compare a continuous vs. another continuous
measure

» makes use of an expansion of the dual variables in a reproducing
kernel Hilbert space (RKHS)



1. Problem Formulation

The definition of joint probability measures

Notations. In the following we consider two metric spaces X and ). We denote by M? (X) the set
of positive Radon probability measures on A, and C(X') the space of continuous functions on X Let

e ML(X), v e ML(Y), we define

D) = {re ML(X xY); Y(4,B) C X x Y,m(A x V) = u(A),7(X x B) = v(B)}

the set of joint probability measures on A x } with marginals 2 and v.
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1. Problem Formulation

The definition of Kullback-Leibler divergence

v(m, &) € Mﬁ—(”f x V)?,

KL(7¢) = Jxxy (log (

E(x,y) —1)dé(z,y),

where we denote g—g the relative density of 7 with respect to &, and by convention KL(7(¢) LIRS
if 7 does not have a density with respect to £&. The Dirac measure at point x is 0,. For a set C,
iole) = 0if x € C'and to(x) = +oo otherwise. The probability simplex of N bins is Xy =
{p& € [Rf P 1}. Element-wise multiplication of vectors is denoted by ® and KT denotes
the transpose of a matrix /. We denote Ly = (1,.... )" eRNand Oy = (0,...,0)" € RV,
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1. Problem Formulation

The Kantorovich formulation of OT and its entropic regularization can be
written in a single convex optimization problem

V(i,v) € ML(X)xML(Y), We(p,v) Z  min / c(x,y)dr(x,y)+e KL(m|p@v). (P:)
mel(pv) Jx xy

In which c(x,y) Is the cost to move a unit of mass from x toy

For any ¢ € C(X x )), we define the following constraint set

U, = {(u,v) € C(X) x C(Y): V(x,y) € X x V,u(x) + v(y) < ez, y)}.

and define its indicator function as well as its “smoothed™ approximation

e e [ owe(u,v) if e =0, 0
o, (u,0) = e}{p(“(EHU(?_C(m’y))d,u.(:t)dr/(y) if =>0.

€ f.ﬁc'xy

For any v € C()), we define its c-transform and its “smoothed™ approximation

min c(x.,y) — v(z if =0,
mi () = v(y) ,.

(2)
—clog (fy exp(w)du(y)) if =>0.

V:I.‘- - .;t} ?-;C,S(;I’-) EE {
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1. Problem Formulation

Proposition 2.1 (Dual and semi-dual formulations). For £ > 0, one has

Welp,v) = max F-(u,v) < f t(z)dp(x / (y)de(y) — oy, (u,v), (D:)

ueC(X),veC(Y)

=|max H:(v) &t / x)dp(x / WJ/ — €, (S:)
veC(Y) X

where 17, is defined in (1) and v® in (2). Furthermore, u solvmg\@c) is recovered from an optimal
v solving (Sz) as u = v©=. For § > (), rhe solution w of (P:)) is recdyered from any (u,v) solving
D.) as dr(z,y) = exlj(“'(m)JrU(%_)_c(m’y))d,u.(;l‘-)du(y).

Fenchel-Rockafellar’s dual theorem

Solving >0 M:o:uzv
" AU

.. Plugging this expression back i p()
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Il. Problem Formulation

Stochastic Optimization Formulations. The fundamental property needed to apply stochastic
programming is that both dual problems (D) and must be rephrased as maximizing expectations:

Ve >0, Fo(u,v) =Exy [fe(X,Y,u,v)] and Ve>0, Ho(v) =Ex [he(X,v)],  (3)

where the random variables X and Y are independent and distributed according to j« and v respec-
tively, and where, for (z,y) € X x Y and (u,v) € C(X) x C()),

=

Ve >0, fo(r,y,u,v) = u(r)+v(y) —cexp (U(m) e y))’

Ve 20, he(e.v) f o(y)dv(y) +v°% (x) — <.
y

When v is discrete, i.e v = Z';:l v;d,, the potential v is a J-dimensional vector (v;);—q1.

and we can compute the gradient of h.. When £ > 0 the gradient reads V., h.(v,x)

v — w(x) and the hessian is given by d2h. (v, x) = 1 (w(z)w(z)" — diag(m(x))) where w(x);
T s P = I —1

i:xI}{\":—f.l_:J-'._h:_'J (Ej:l_ {:x[}{v! £ :!}f}})

£

(S
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lll. Discrete Optimal Transport

Discrete Optimization and Sinkhorn. In this setup, the primal (P;), dual ¢
problems can be rewritten as finite-dimensional optimization problems involving the cost matrix

= [RIXJ defined by ¢; ; = c(x;.v,):

We(p,v) = min {Z” CijT;;+¢ Z” (log ™ u:, 1)71'3-,3- iy = H_-WTII = u}. (P-)

ﬂ-'E[RiXJ
T aeR! veRY D Wik + D0 ViV — £, i exp (M)u i, (for= > 0) (D.)
= 1%;% EE(V) = Z E.E(;zri_.v)pi, where (S.)
— Vi— C($ Y5) N~ .
hg(a V) ZV v+ log (Z EJGRP( Vi) —¢ 1T > 0, &)
jed 1111113 ( (T y_j‘) T Vj) if £ = 0.

Stochastic gradient descent (SGD): the gradient of that term can be used as a proxy
for the full gradient in a standard gradient ascent step to maximize
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lll. Discrete Optimal Transport

Stochastic gradient descent (SGD)

Example: For an optimization problem
Objective function J=minQ(w)= min%iq (@)
0] 0] i1

When used to minimize the above function, a standard (or "batch") gradient descent
method would perform the following iterations :

a):za)—nVQ(a))za)—nZn:VQ(a))/n

where 77 is a step size. However, evaluating the sum-gradient may require expensive
evaluations of the gradients from all summand functions. To economize on the
computational cost at every iteration, stochastic gradient descent samples a subset of
summand functions at every step. This is very effective in the case of large-scale
machine learning problems.

10
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lll. Discrete Optimal Transport

Stochastic gradient descent (SGD)

In stochastic (or "on-line") gradient descent, the true gradient of Q(w) is
approximated by a gradient at a single example

w=0-nVQ, (o)

In pseudocode, stochastic gradient descent can be presented as follows:

e Choose an initial vector of parameters w and learning rate 7.

e Repeat until an approximate minimum is obtained:

¢ Randomly shuffle examples in the training set.

e Fori =1,2,...,n,do:
ow:=w—NVQ;(w).

11
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lll. Discrete Optimal Transport

Averaged stochastic gradient descent (Average SGD)

Invented independently by Ruppert and Polyak in the late 1980s, is ordinary
stochastic gradient descent that records an average of its parameter vector
over time. That is, the update is the same as for ordinary stochastic gradient
descent, but the algorithm also keeps track of

5:151:@
Ui

When optimization is done, this averaged parameter vector takes the place of w

Stochastic averaged gradient (SAG): the stochastic average gradient
method with a (user-supplied) constant step size.

12



lll. Discrete Optimal Transport

The flow chat of SAG for discrete OT

Algorithm 1 SAG for Discrete OT

Stepsize Input: C
Output Output: v
Initial gi =0 v 07.,d«05.Vi.g;, < 0y

fork=1.2.... do

Sample 7 € {1.2.....7} uniform.

d«d-— gi_

gi Hivvhg(i‘-i. V)

d«d+g;:vev+Od
end for

Update gradient

13
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lll. Discrete Optimal Transport

Numerical llustrations on Bags of Word-Embeddings

r l—l.\_ﬂnn ug f_:rmli{'{].t - Speedup of SAG vs. Sinkhorn e p{'\'iulinll to f}]:iillli}l Dllq‘l!
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Figure 1: We compute all 595 pairwise word mover’s distances [11] between 35 very large corpora
of text, each represented as a cloud of I = 20, 000 word embeddings. We compare the Sinkhorn
algorithm with SAG, tuned with different stepsizes. Each pass corresponds to a [ x I matrix-vector
product. We used minibatches of size 200 for SAG. Left plot: convergence of the gradient £; norm
(average and + standard deviation error bars). A stepsize of 3/L achieves a substantial speed-up
of ~ 2.5, as illustrated in the boxplots in the center plot. Convergence to v* (the best dual variable
across all variables after 4,000 passes) in £ norm is given in the right plot, up to 2,000 ~ 2! steps. 14



V. Semi-Discrete Optimal Transport

The flow chat of SGD for discrete OT

Algorithm 2 Averaged SGD for
Semi-Discrete OT

Stepsize Illpllt: ('

Output  Qutput: v
V075, vev
for k. =1.2....

Sample ;. from p

V< V+ \/—V D (g

Update output

Vﬂ—k\f

v)

end for
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V. Semi-Discrete Optimal Transport

Numerical Hllustrations

1D“

10!

— SGD
— SAG, N=100
— SAG, N = 1000
— SAG, N = 10000
T o TR

107

108 100

" (a) SGD (b) SGD vs. SAG
Figure 2: (a) Plot of ||vi — v§||, /||VS]l, as a function of k, for SGD and different values of &
(¢ = 0 being un-regularized). (b) Plot of ||vy — vZ||, /||vZ]|, as a function of k, for SGD and SAG
with different number NV of samples, for regularized OT using ¢ = 1072,

10° 10! 1

Figure 2 (a) shows the evolution of ||vi — v{|[, / ||v§l, as a function of k. It highlights the influence
of the regularization parameters £ on the iterates of SGD. While the regularized iterates converge
faster, they do not converge to the correct unregularized solution. This figure also illustrates the
convergence theorem of solution of (S;) toward those (Sp) when & — 0, which can be found in the
supplementary material. Figure 2 (b) shows the evolution of ||vy — v}||, / [|[vZ]|, as a function of
k, for a fixed regularization parameter value ¢ = 10~ 2. It compares SGD to SAG using different
numbers /N of samples for the empirical measures fiy. While SGD converges to the true solution of
the semi-discrete problem, the solution computed by SAG is biased because of the approximation
error which comes from the discretization of p. This error decreases when the sample size N is
increased, as the approximation of p by jiy becomes more accurate. 16
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V. Continuous Optimal Transport

Stochastic Continuous Optimization. We consider two RKHS A and G defined on A and on )/,
with kernels x and /, associated with norms || - |4 and || - Hg Recall the two main properties of
RKHS: (a) if uw € H, then u(z) = (u,k(-,z))y and (b) k(z,2') = (k(-, x), k(-, 2"))n.

The dual problem is conveniently re-written in (3) as the maximization of the expectation of
f€(X,Y, u,v) with respect to the random variables (X ,Y') ~ 1t ® v. The SGD algorithm applied to
this problem reads, starting with ug = 0 and vy = 0,

T

(up, v) = (up—1,v5—1) + ﬁvfs(ink; Yk, Ug—1,Vk—1) € H X G, (5)

where (2, yx) are i.i.d. samples from ;1 ® v. The following proposition shows that these (ug, vi)
iterates can be expressed as finite sums of kernel functions, with a simple recursion formula.

Proposition 5.1. The iterates (u, vy ) defined in (S) satisfy

def. C ug—1(xg)+vs_1(¥i)—el(®i:v3) ‘ ,
(g, vk Z a;(k (-,v:)), where o; = TIlp, (\[ (1 —e e ) . (6)
;
where (x;, y@-)izl_.k are i.i.d samples from ot @ v and I1g_ is the projection on the centered ball of
radius r. If the solutions of (D.) are in the H X G and if r is large enough, the iterates (uy,vy,)
converge to a solution of (D.).

17



V. Continuous Optimal Transport

The flow chat of Kernel SGD for discrete OT

Algorithm 3 Kernel SGD for continuous OT

StepsizeC Input: C', kernels ~ and ¢
and Output: (o, zr. Yr)r=1,...

Kernels

Update output

for k. =1.2,... do

Sample zj, from p
Sample 1, from v

def. «—k—1
up—1 (1) = D im1 ik Tk, ;)
def. \~=k—1
“l-’k—l('yk) — Zz’:l &if(yk?yi)

E

= -

def. up_1(zg)tvp_q1(vg) —clzg.yk)
¢ (1 —e

)

end for

18
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V. Continuous Optimal Transport

Numerical Hllustrations

| 1.1

1.04

0.9

. ~
ERERAN
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1.4-’ i i

{ 0.5

(a) setting (b) convergence of uy (c) plots of uy

Figure 3: (a) Plot of %‘If and 9%, (b) Plot of |[uy, — a*||,, / [[*]|,, as a function of k£ with SGD in the
RKHS, for regularized OT using € = 107! (c) Plot of the iterates u;, for & = 103, 10*, 10° and the
proxy for the true potential i*, evaluated on a grid where ;2 has non negligible mass.

19
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Thank You!
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