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1. Motivation and Related Work

* Persistence diagrams (PDs) play a key role in topological data analysis

* PDs enjoy strong stability properties and are widely used

* However, they do not live 1n a space naturally endowed with a Hilbert
structure and are usually compared with non-Hilbertian distances, such
as the bottleneck distance.

* To in corporate PDs 1n a convex learning pipeline, several kernels
have been proposed with a strong emphasis on the stability of the
resulting RKHS (Reproducing Kernel Hilbert Space) distance

* In this article, the authors use the sliced Wasserstein distance to define
a new kernel for PDs

* Stable and discriminative




Related Work

* A series of recent contributions have proposed kernels for PDs, falling
into two classes

* The first class of methods builds explicit feature maps

* One can compute and sample functions extracted from PDS (Bubenik,
2015; Adams et al., 2017; Robins & Turner, 2016)

* The second class of methods defines implicitly features maps by
focusing instead on building kernels for PDs

* For instance, Reininghaus et al (2015) use solutions of the heat

differential equation in the plane and compare them with the usual L?
(R?) dot product



2. Background on TDA and Kernels

2. 1 Persistent Homology

* Persistent Homology 1s a technique inherited from algebraic topology
for computing stable signature on real-valued functions

* Given f : X — R as input, persistent homology outputs a planar point
set with multiplicities, called the persistence diagram of f denoted by

Dg f.
* It records the topological events ( e.g. creation or merge of a
connected component, creation or filling of a loop, void, etc)

* Each point in the persistence diagram represents the lifespan of a
particular topological feature, with 1ts creation and destruction times as
coordinates
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Figure 1: Sketch of persistent homology: (a) the horizontal lines are the boundaries of sublevel
sets f((—oo,t]), which are colored in decreasing shades of grey. The vertical dotted lines are the
boundaries of their different connected components. For instance, a new connected component is
created in the sublevel set f~1((—o0,t]) when t = f(p), and it is merged (destroyed) when t = f(s);
its lifespan is represented by a copy of the point with coordinates (f(p), f(s)) in the persistence
diagram of f (Figure (c)); (b) a piecewise-linear approximation g (blue) of the function f (red) from
sampled values; (c) superposition of Dg(f) (red) and Dg(g) (blue), showing the partial matching
of minimum cost (magenta) between the two persistence diagrams.



Distance between PDs

Let’s define the pth diagram distance between PDs. Let p € N and D, D,
be two PDs. LetI': D, 2 A - B € Dy, be a partial bijection between D,
and D, . Then, for any point x € A, the p-cost of x is defined as ¢, (x) :=
lx — T(x)]|%,, and for any point y € (Dg, U Dy )\ (AU B), the p-cost of y
is defined as ¢, (y) := ||y — ma (M5, where 1, is the projection onto to
the diagonal A = {(x,x) | x € R}. The cost ¢, (I') is defined as: ¢, (T') =
(T cp () + Ty (7)) 1.

We then define the pth diagram distance d,, as the cost of the best partial
bijection between the PDs:

dp(Dg1,Dgs) = illlf cp(I).

In the particular case p = +oo, the cost of I' is defined as c(I') :=
max{max c¢; (x) + maxc;(y)}. The corresponding distance d. is often
y

X
called the bottleneck distance.



2.2 Kernel Methods

Positive Detfinite Kernels

Given a set X, a function k : X X X — R 1s called a positive definite kernel
if for all integers n, for all families x4, ..., x, of points in X, the matrix

| ke (x;, x,-)]l_j is itself positive semi-definite. For brevity, positive definite
kernels will be just called kernels 1n the rest of the paper.

It 1s known that kernels generalize scalar products, in the sense that, given a
kernel k, there exists a Reproducing Kernel Hilbert Space (RKHS) H;, and
a feature map ¢ : X > Hj such that k(xy,x;) = (P(x1), d(x2))e,. A
kernel k also induces a distance d; on X that can be computed as the
Hilbert norm of the difference between two embeddings:

dIZC(xl) XZ) = k(le xl) + k(Xz,Xz) o Zk(xll xZ)



Negative Definite and RBF Kernels

* A standard way to construct a kernel 1s to exponentiate the negative

of a Fuclidean distance.

_ 2
 Gaussian kernel: k;(x,y) = exp (— “2;;” ), where o > 0.

* Theorem of Berg et al. (1984) (Theorem 3.2.2, p.74) states that such

an approach to build kernels, namely setting k,(x,y) &

exp(— ! g’;i )), for an arbitrary function f can only yield a valid

positive definite kernel for all o > 0 if and only if f is a negative
semi-definite function, namely that, for all integers n, Vx4, ..., x,, €
X, va,...,a, € R™ such that Zi a; = O, Zi,j aiajf(xi,xj) < 0.

* In this article, the authors use an approximation of d; with the
Sliced Wasserstein distance and use 1t to define a RBF kernel



2.3 Wasserstein distance for unnormalized measures on R

 The 1-Wasserstein distance for nonnegative, not necessarily normalized,
measures on the real line.

 Let 4 and v be two nonnegative measures on the real line such that |u| = u(R)

and |v| = v(R) are equal to the same number r. Let’s define the three following
objects:

Win,v) = inf / /R Iz = ylP(dn,dy 2)
(i) = 1 /R MY () — N~ (2)|da 3)
cr) =, ot | f(@)lu(de) - v(do) (4)

where [](u, V) is the set of measures on R? with marginals y and v, and M~ and
N~ the generalized quantile functions of the probability measures u/r and v/r
respectively



Proposition 2.1

W = @, = L. Additionally (1) @, 1s negative definite on the space of
measures of mass r; (1) for any three positive measures , v,y such that
lul = [v|, we have L(u +y,v+vy) = L(u,V).

The equality between (2) and (3) 1s only valid for probability measures on
the real line. Because the cost function || is homogeneous, we see that the
scaling factor 7 can be removed when considering the quantile function and
multiplied back. The equality between (2) and (4) 1s due to the well known
Kantorovich duality for a distance cost which can also be trivially
generalized to unnormalized measures.

The definition of @, shows that the Wasserstein distance 1s the [; norm of
rM~1 —rN~1, and is therefore a negative definite kernel (as the [; distance
between two direct representations of u and v as functions rM~! and
rN~1), proving point (i). The second statement is immediate.



* An important practical remark:

For two unnormalized uniform empirical measures pu = Y., &,
and v = },;_, 6, of the same size, with ordered x; < -+ < x, and
Y1 S =Y, One has: W(M,V) — 7iﬁlzllxi _yil — ”X _ Y”l ’
where X = (x4, ..., x,) ER"and Y = (y4, ..., y,) € R"



3. The Sliced Wasserstein Kernel

* The 1dea underlying this metric 1s to slice the plane with lines passing
through the origin, to project the measures onto these lines where W 1s
computed, and to integrate those distances over all possible lines.

Definition 3.1. Given 6 € R* with ||@]|, = 1, let L(0) denote the line
{10 | 1 € R}, and let my: R? > L(8) be the orthogonal projection onto

L(@). LetDg,, Dg, be two PDs, and let ud = = Ypeng, Onp(p) and udy =
ZPEDgl Orgomyp(p)» and similarly for ud ., where m, is the orthogonal

projection onto the diagonal. Then, the Sliced Wasserstein distance 1s defined
as:

Since @, 1s negative semi-definite, we can conclude that SW 1tself 1s
negative semi-definite.



LLemma 3.2 Let X be the set of bounded and finite
PDs. Then, SW is negative semi-definite on X.

Proof. Letn € N*,aq,...,a, € Rsuchthat) . a; = Oand
Dpyccae e, EXGiven 'l < i< nywe let ﬁ? = ,uf -+

~0 .
qung,k# Omgoma(q)s Hijn = Zpeng,k;éi,j Omgoma (p)
and d = > . |Dg;|. Then:

D aiaW(pl + pias 1f + pia)

%]

— Z aza;L(p7 + N?Aa N? + pin)
1,7

= Z a;a L(p + PG + pdin, 1§ + BiA + Bia)
2

= aia; L(a¢, 49) = ) aia; Qa(Af, i) < 0
57 i,7

The result follows by linearity of integration. []



* Hence, the theorem of Berg et al. (1984) allows us to define a valid

kernel with:
ef. SW(Dg,,D
ksw(Dg1,Dgs) = exp ( ( 2g012 g2)>

Theorem 3.3 Let X be the set of bounded PDs with cardinalities
bounded by N € N*. Let Dg,,Dg, € X. Then, one has:

d1(Dgy1,Dg,)
2M

< SW(Dgl,Dgz) < Zﬁdl(DgllDQZ)

where M =1+ 2N(2N — 1)



Proof. Let s’ : Dg; Uma(Dgy) — Dgy Uma(Dg;) be the
one-to-one bijection between Dg, U wa (Dg,) and Dg, U

ma(Dg;) induced by W(u§ + pufa, 1§ + ufA), and let s
be the one-to-one bijection between Dg,; U ma(Dg,) and
Dg, U ma(Dg,) induced by the partial bijection achieving

d1(Dg,, Dgy).

Upper bound. Recall that ||0||2 = 1. We have:
W(:u’? s ,ngA,,Uzg 53 M?A) — Z |<p o Se(p)a 9>|
<> [p—50),0) <V2)  [lp—s0)llw
< 2V2d, (Dg;, Dgy),

where the sum is taken over all p € Dg; U wa(Dg,). The
upper bound follows by linearity.



Lower bound. The idea is to use the fact that s? is a
piecewise-constant function of #, and that it has at most
242N (2N —1) critical values Oy, ..., O)7 in [— 5, 5]. In-
deed, it suffices to look at all 8 such that (p; —p2, 8) = 0 for
some p1,p2 in Dg; U ma (Dg,) or Dg, U wa (Dg,). Then:

S FER
[ Y- s"w).0)la0

_ e, O34 s
D llp—s® ()|l cos(£(p — s®%(p),0))|d6

O;

> lp— s® (D)]|2(0iy1 — ©:)?/2m

> (©i41 — ©;)%d1(Dg;, Dg,) /2,
where the sum is again taken over all p € Dg; U wa(Dg,),
and where the inequality used to lower bound the integral

of the cosine 1s obtained by concavity. The lower bound
follows then from the Cauchy-Schwarz inequality. [l




Computation

In practice, the authors propose to approximate k¢, in O(Nlog(N))
time using Algorithm 1.

Algorithm 1 Computation of SW

Input: Dg, = {p1 ... py, }» Dgy = {7 ... 03, }, M.
Add 7a (Dg,) to Dg, and vice-versa.
LetSWy =0;0 = —7/2; s =n/M,;
for:=1... M do
Store the products (pz,, 6) in an array V1;
Store the products (p7, 6) in an array V5;
Sort V7 and V5 in ascending order;
SWyr = SWy + s||V1 — Va|1;
6 =04 s;
end for
Output: (1/7)SW ;




4 Experiments

* PSS. The Persistence Scale Space kernel kpgs (Reininghaus et al., 2015)

* PWG. The Persistence Weighted Gaussian kernel kpy, . (Kusano et al.,
2016; 2017)

* Experiment: 3D shape segmentation. The goal 1s to produce point
classifiers for 3D shapes.

* Use some categories of the mesh segmentation benchmark of Chen et al
. (Chen et al., 2009), which contalns 3D shapes classified in several
categorles (¢ alrplane” “human”, “ant”, ...). For each category, the goal
1s to design a classifier that can assign, to each pomt in the shape, a label
that describes the relative location of that pomt in the shape. To train
classifiers, we compute a PD per point using the geodesic distance

function to this point.




Results

TASK kpss kpwa ksw

HUMAN 08.0 2.0 064.2+1t1.2 74.0 = 0.2
AIRPLANE | 60.4+24 61.3+29 72.6+0.2
ANT 86.3+1.0 &74+0.5 92.31+0.2
BIRD o7.7t1.8 720x1.2 67.0x0.5
FOURLEG | 67.0t2.50 64006 73.0+0.4
OCTOPUS 770+10 786=xt13 85.2+1+0.5
FISH 70.1+-16 79.8+0.5 75004




