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Intro and Motivation

A mixture model is a probabilistic model describing properties of populations with subpopulations.

To study OMT on certain submanifolds of probability densities. To retain the nice properties of OMT, 

herein, an explicit OMT framework on Gaussian mixture models is used.

Data is sparsely distributed among subgroups. The difference between data within a subgroup is way less 

significant than that between subgroups. 



Gaussian Mixture Model (GMM) Learning

Unsupervised clustering 
based on naive Bayes



GMM: Expectation - Maximization (EM)



GMM: Expectation



GMM: Maximization



GMM: 2D example

https://www.youtube.com/watch?v=B36fzChfyGU

http://www.youtube.com/watch?v=B36fzChfyGU


OMT Background



OMT Background: Kantorovich

Coupling

The unique optimal transport T is the gradient of a convex function



OMT Background: Kantorovich

The optimal coupling based on the transport map T in (2), where Id is the identity map.

The square root of the minimum of the cost defines a Riemannian metric on                    , known as the 

Wasserstein metric          . On this Riemannian-type manifold, the geodesic curve is given by 

Displacement Interpolation



Gaussian marginal distributions

Denote the mean and covariance of

Let X, Y be two Gaussian random vectors associated with                  respectively.

Our new cost from (1) becomes

 



Gaussian marginal distributions

The constraint is semidefinite constraint, so the (6) is a semidefinite

programming (SDP). It turns out that the minimum is achieved by the unique minimizer in closed-form:

With minimum value



Gaussian marginal distributions

Displacement Interpolation as a Gaussian:

Wasserstein Distance can be extended to singular Gaussian distributions



OMT for GMM

Space of distributions: 

We view it as a discrete distribution on the Wasserstein space of Gaussian distributions: 



OMT for GMM

The discrete OMT problem:







Geodesic





Notes

This is due to the fact that the restriction to the submanifold induces suboptimality in the transport plan.

d is a very good approximation of W2 if the variances of the Gaussian components are small compared 

with the differences between the means.

Only (9) must be solved to compute a new distance, which is extremely efficient with small distributions 



Barycenter of GMM



Barycenter of GMM

Solve with fixed point iteration:

Remark: unrealistic to solve (14) for more than 3 dimensions for both general and gaussian distributions



Barycenter of GMM

Modified problem: 

Let                                                                                       as a discrete measure on 



Barycenter of GMM

The optimal v is gaussian. Denote the set of all such minimerzers 

For some probability vector

The number of element N is bounded above by



Barycenter of GMM

Barycenter                                                           with



Numerical Examples





Geodesic













Barycenter




