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Abstract—Three different families of hierarchical clustering methods sat-
isfying the axioms of value – in a network with two nodes the nodes
cluster together at resolutions at which both can influence each other –
and transformation – when we reduce some pairwise dissimilarities and
increase none, the resolutions at which nodes cluster together may decrease
but not increase – are introduced. The grafting family exchanges branches
between dendrograms generated by different admissible methods. The convex
combination family combines admissible methods using a convex operation
in the space of dendrograms. The semi-reciprocal family is related to the
reciprocal and nonreciprocal clustering methods introduced in [1]. Algorithms
for the computation of hierarchical clusters generated by reciprocal and
nonreciprocal clustering as well as the grafting, convex combination, and semi-
reciprocal families are derived using matrix operations in a dioid algebra.

I. INTRODUCTION

The output of hierarchical clustering methods is a dendrogram con-
sisting of a nested set of partitions indexed by a resolution parameter.
We consider the problem of devising methods to construct dendrograms
associated with a given network of asymmetric dissimilarities. While a
large number of methods for determining hierarchical and nonhierarchical
clusters in finite metric spaces exists – see, e.g., [2] –, methods to identify
clusters in a network of asymmetric dissimilarities are rarer [3]–[5]. This
relative rarity is expected because the intuition of clusters as groups
of nodes that are closer to each other than to the rest is difficult to
generalize when nodes are close in one direction but far apart in the
other. To overcome this generic difficulty we can draw inspiration from
the fundamental underpinnings of clustering, which, although not as well
developed as its practice [6], [7], are by now quite well established in
the case of finite metric spaces [8]–[10]. Of particular relevance to our
work is the case of hierarchical clustering [11]. In this context, it has been
shown in [12] that single linkage [13, Ch. 4] is the unique hierarchical
clustering method that satisfies three reasonable axiomatic statements.

In the context of asymmetric networks, our work in [1] introduces the
axioms of value – in a network with two nodes the nodes cluster together at
resolutions at which both can influence each other – and transformation –
reducing some pairwise dissimilarities and increasing none cannot increase
the resolution at which clusters form – as reasonable behaviors that we
should expect to see in hierarchical clustering methods for asymmetric
networks. These axioms are not stringent but they do result in the strong
conclusion that all methods that abide to these axioms lie between two
particular cases in a well defined sense. The first method requires that
clusters form through arcs in which both dissimilarities are small and
is therefore termed reciprocal clustering. The second method, termed
nonreciprocal clustering, allows clustering if loops of proximity can be
formed. Any clustering method that satisfies the value and transformation
axioms forms clusters at resolutions coarser than those of nonreciprocal
clustering and finer than those of reciprocal clustering. For symmetric
networks, reciprocal and nonreciprocal clustering coincide, recovering
the uniqueness result in [12]. In the context of asymmetric networks,
the difference between reciprocal and nonreciprocal clustering allows the
existence of intermediate clustering methods.
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This paper introduces three families of intermediate clustering methods
(Section III). The grafting family is built by exchanging branches between
dendrograms generated by different admissible methods (Section III-A).
Convex combinations of dendrograms generated by admissible methods
yield a second family (Section III-B). The semi-reciprocal family requires
part of the influence to be reciprocal and allows the rest to propagate
through loops (Section III-C). We further derive algorithms to compute
dendrograms generated by reciprocal and nonreciprocal clustering as well
as the grafting, convex combination, and semi-reciprocal families using
matrix operations in a dioid algebra (Section IV).

II. PRELIMINARIES

Define the network N = (X,AX) as a set of n points or nodes X
jointly specified with a finite dissimilarity function AX defined for all
pairs x, x′ ∈ X . Dissimilarities AX(x, x′) from x to x′ are nonnegative,
and null if and only if x = x′, but may not satisfy the triangle inequality
and may be asymmetric, i.e. AX(x, x′) 6= AX(x′, x) for some x, x′ ∈ X .
The values AX(x, x′) can be grouped in a matrix which, as it doesn’t lead
to confusion, we also denote as AX ∈ Rn×n. A hierarchical clustering of
N = (X,AX) is a dendrogram DX which is defined as a nested set of
partitions DX(δ) indexed by the resolution parameter δ ≥ 0. Partitions
in DX are such that for δ = 0 each point x is in a separate cluster, i.e.,
DX(0) =

{
{x}, x ∈ X

}
, and for some sufficiently coarse resolution δ0

all nodes are in the same partition, i.e., DX(δ0) =
{
X
}

. The requirement
of nested partitions means that if x and x′ are in the same partition at
resolution δ0 they stay co-clustered for all larger resolution δ > δ0. From
these conditions it follows that dendrograms can be represented as trees
[12]. When x and x′ are co-clustered at resolution δ in DX we say that
they are equivalent at that resolution and write x ∼DX (δ) x

′.
An ultrametric uX on the space X is a function that satisfies the reflex-

ivity uX(x, x′) = uX(x′, x) and identity uX(x, x′) = 0 ⇐⇒ x = x′

properties as well as the strong triangle inequality

uX(x, x′) ≤ max
(
uX(x, x′′), uX(x′′, x′)

)
. (1)

For a given dendrogram DX consider the minimum resolution δ at which
x and x′ are clustered together and define

uX(x, x′) := min
{
δ ≥ 0, x ∼DX (δ) x

′}. (2)

It can be shown that the function uX satisfies (1) proving that dendrograms
and finite ultrametric spaces are equivalent, e.g., [12]. While dendrograms
are useful graphical representations, ultrametrics are more convenient to
present the results contained in this paper.

A hierarchical clustering method is a map H : N → D from the space
of networks N to the space of dendrograms D, or, equivalently, a map
H : N → U mapping a network H(X,AX) = (X,uX) into the space
U of networks with ultrametrics. Our goal here is to find methods H that
abide to the following intuitive restrictions:

(A1) Axiom of Value. Consider a two-node network N = (X,AX)
with X = {p, q}, AX(p, q) = α, and AX(q, p) = β. The ultrametric
(X,uX) = H(X,AX) produced by H satisfies

uX(p, q) = max(α, β). (3)



x x1 . . .. . . xr x′

AX(x, x1) AX(x1, x2) AX(xr−1, xr) AX(xr, x′)
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Fig. 1. Reciprocal clustering. Nodes x, x′ cluster at resolution δ if they can be
joined with a bidirectional chain of maximum dissimilarity δ [cf. (5)]. Reciprocal
ultrametrics are largest among those produced by clustering methods satisfying the
value and transformation axioms.

(A2) Axiom of Transformation. Given networks NX = (X,AX) and
NY = (Y,AY ) and a dissimilarity reducing map φ : X → Y such
that for all x, x′ ∈ X it holds AX(x, x′) ≥ AY (φ(x), φ(x′)), the output
ultrametrics (X,uX) = H(X,AX) and (Y, uY ) = H(Y,AY ) satisfy

uX(x, x′) ≥ uY (φ(x), φ(x′)). (4)

Axiom (A1) says that in a network with two nodes p and q, the
dendrogram DX has them merging at the maximum value of the two
dissimilarities AX(p, q) = α and AX(q, p) = β. This is reasonable
because at resolutions δ < max(α, β) one node can influence the other
but not vice versa, which in most situations means that the nodes are not
alike. Axiom (A2) states that a contraction of the dissimilarity matrix AX
entails a contraction of the ultrametric uX .

A hierarchical clustering method H is admissible if it satisfies axioms
(A1) and (A2). Two admissible methods of interest are reciprocal and
nonreciprocal clustering. The reciprocal clustering methodHR with output
(X,uR

X) = HR(X,AX) is the one for which the ultrametric uR
X(x, x′)

between points x and x′ is given by

uR
X(x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
ĀX(xi, xi+1), (5)

where ĀX(x, x′) := max(AX(x, x′), AX(x′, x)). In (5), the chain
C(x, x′) = [x = x0, x1, . . . , xr+1 = x′] is defined as an ordered
sequence of nodes linking x and x′. Definition (5) is illustrated in Fig. 1.
Intuitively, search for chains C(x, x′) linking nodes x and x′. Then, for a
given chain, walk from x to x′ and determine the maximum dissimilarity,
in either the forward or backward direction, across all links in the chain.
The reciprocal ultrametric uR

X(x, x′) is the minimum of this value across
all possible chains.

Reciprocal clustering joins x to x′ by going back and forth at maximum
cost δ through the same chain. Nonreciprocal clustering HNR permits
different chains. Define the minimum directed cost as

ũNR
X (x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
AX(xi, xi+1), (6)

and the nonreciprocal ultrametric as the maximum of the two minimum
directed costs from x to x′ and x′ to x

uNR
X (x, x′) = max

(
ũNR
X (x, x′), ũNR

X (x′, x)
)
. (7)

Definition (7) is illustrated in Fig. 2. We consider forward chains C(x, x′)
going from x to x′ and backward chains C(x′, x) going from x′ to x.
We then determine the respective maximum dissimilarities and search
independently for the best forward and backward chains that minimize
the respective maximum dissimilarities. The nonreciprocal ultrametric
uNR
X (x, x′) is the maximum of these two minimum values. Observe that

since reciprocal chains are particular cases of nonreciprocal chains we
must have uNR

X (x, x′) ≤ uR
X(x, x′) for all pairs of nodes x, x′.

Reciprocal and nonreciprocal clustering are of importance because they
bound the range of ultrametrics generated by any other admissible method
H in the sense stated in the following theorem.

Theorem 1 ([1]) Consider an arbitrary network N = (X,AX) and let
uR
X(x, x′) and uNR

X (x, x′) be the associated reciprocal and nonreciprocal
ultrametrics as defined in (5) and (7). Then, for any admissible method
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′
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r′ )

AX(x′
r′ , x)

Fig. 2. Nonreciprocal clustering. Nodes x, x′ cluster at resolution δ if they can be
joined in both directions with possibly different chains of maximum dissimilarity
δ [cf. (7)]. Nonreciprocal ultrametrics are smallest among those produced by
clustering methods that satisfy the value and transformation axioms.

H the output ultrametric (X,uX) = H(X,AX) is such that for all pairs
x, x′,

uNR
X (x, x′) ≤ uX(x, x′) ≤ uR

X(x, x′). (8)

According to Theorem 1, nonreciprocal clustering yields uniformly min-
imal ultrametrics while reciprocal clustering yields uniformly maximal
ultrametrics among all methods satisfying (A1)-(A2). Section III presents
intermediate methods lying in the space between HNR and HR. Section IV
develops algorithms for the computation of uNR

X , uR
X , and the intermediate

output ultrametrics of the methods derived in Section III.

III. INTERMEDIATE CLUSTERING METHODS

Fig. 3 shows an example network as well as the corresponding recip-
rocal and nonreciprocal dendrograms. Since these two are different we
pursue alternative admissible methods satisfying axioms (A1)-(A2).

A. Grafting and related constructions

A family of admissible methods can be constructed by grafting branches
of the nonreciprocal dendrogram into corresponding branches of the
reciprocal dendrogram; see Fig. 3. To be precise consider a given positive
constant β > 0. For any given network N = (X,AX) compute the
reciprocal and nonreciprocal dendrograms and cut all branches of the
reciprocal dendrogram at resolution β. For each of these branches define
the corresponding branch in the nonreciprocal tree as the one whose leafs
are the same. Replacing the cut branches of the reciprocal tree by the
corresponding branches of the nonreciprocal tree yields the HR/NR(β)
method. Grafting is equivalent to providing the following piecewise
definition of the output ultrametric.

u
R/NR
X (x, x′;β) =

{
uNR
X (x, x′), if uR

X(x, x′) ≤ β,
uR
X(x, x′), if uR

X(x, x′) > β.
(9)

For pairs x, x′ having large reciprocal ultrametric uR
X(x, x′) > β we keep

the reciprocal ultrametric value uR/NR
X (x, x′;β) = uR

X(x, x′). For pairs
x, x′ with small reciprocal ultrametric uR

X(x, x′) ≤ β we replace the
reciprocal by the nonreciprocal ultrametric and make uR/NR

X (x, x′;β) =
uNR
X (x, x′).
To show that (9) is an admissible method we need to show that it

defines an ultrametric in the space X and that this ultrametric satisfies
axioms (A1) and (A2). This is asserted in the following proposition.

Proposition 1 The hierarchical clustering method HR/NR(β) with ultra-
metrics as in (9) satisfies axioms (A1) and (A2).

Proof: See [14]. �

Since uR/NR
X (x, x′;β) coincides with either uNR

X (x, x′) or uR
X(x, x′),

it then satisfies Theorem 1 as it should be the case for any admissible
method.

In the method HR/NR(β) we use the reciprocal ultrametric as a
decision variable and use nonreciprocal ultrametrics for nodes having
small reciprocal ultrametrics. There are three other possible grafting
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Fig. 3. Dendrogram grafting. Dendrograms resulting from three different clustering
methods applied on the network on the left. Undrawn edges have dissimilarities
greater than 5. The first two dendrograms correspond to the reciprocal and the
nonreciprocal methods respectively. The third dendrogram is the grafting result of
the first two as defined in (9) with β = 4. The third dendrogram is constructed by
replacing the colored branches of the reciprocal dendrogram with the corresponding
branches of the nonreciprocal dendrogram.

combinations HR/R(β), HNR/R(β) and HNR/NR(β) but none of them
outputs a valid ultrametric. In HR/R(β), we use reciprocal ultrametrics
as decision variables and as the choice for small values of reciprocal
ultrametrics,

u
R/R
X (x, x′;β) =

{
uR
X(x, x′), if uR

X(x, x′) ≤ β,
uNR
X (x, x′), if uR

X(x, x′) > β.
(10)

The method HR/R(β) as defined in (10) is not valid, however, because
the function u

R/R
X (β) is not an ultrametric as it violates the strong

triangle inequality in (1). E.g., focusing on the network in Figure 3,
we use (10) to compute u

R/R
X (a, b; 4) = 3, since uR

X(a, b) = 3 and
the reciprocal ultrametric between a and b is uR

X(a, b) ≤ β = 4.
Similarly, uR/R

X (b, c; 4) = 1 and u
R/R
X (a, c; 4) = 1. Hence, we obtain

u
R/R
X (a, b; 4) > max(u

R/R
X (a, c; 4), u

R/R
X (b, c; 4)), violating (1).

In HNR/NR(β) we use nonreciprocal ultrametrics as decision variables
and as the choice for small values of nonreciprocal ultrametrics. In
HNR/R(β) nonreciprocal ultrametrics are used as decision variables and
reciprocal ultrametrics are used for small values of nonreciprocal ultra-
metrics. Both of these methods can be seen to also violate the strong
triangle inequality.

A second valid grafting alternative can be obtained as a modification
of HR/R(β) in which reciprocal ultrametrics are kept for pairs having
small reciprocal ultrametrics, nonreciprocal ultrametrics are used for pairs
having large reciprocal ultrametrics, but all nonreciprocal ultrametrics
smaller than β are saturated to this value. Denoting the method as
HR/Rmax(β) the output ultrametrics are thereby given as

u
R/Rmax
X (x, x′;β) =

{
uR
X(x, x′), if uR

X(x, x′) ≤ β,
max

(
β , uNR

X (x, x′)
)
, if uR

X(x, x′) > β.
(11)

This alternative definition entails a valid clustering method satisfying
axioms (A1)-(A2) as we claim in the following proposition.

Proposition 2 The hierarchical clustering method HR/Rmax(β) with ul-
trametrics as in (11) satisfies axioms (A1) and (A2).

Proof: See [14]. �

Remark 1 The grafting combination HR/NR(β) allows nonreciprocal
propagation of influence for resolutions smaller than β while requiring
reciprocal propagation for higher resolutions. This is of interest if we
want tight clusters of small dissimilarity to be formed through loops
of influence while looser clusters of higher dissimilarity are required to

form through links of bidirectional influence. Conversely, the clustering
method HR/Rmax(β) requires reciprocal influence within tight clusters of
resolution smaller than β but allows nonreciprocal influence in clusters
of higher resolutions. This latter behavior is desirable in, e.g., trust
propagation in social interactions, where we want tight clusters to be
formed through links of mutual trust but allow looser clusters to be formed
through unidirectional trust loops.

B. Convex combinations

Intermediate admissible methods can also be obtained by performing a
convex combination of methods known to satisfy axioms (A1) and (A2).
Indeed, consider two admissible clustering methods H1 and H2 and a
given parameter 0 ≤ θ ≤ 1. For arbitrary network N = (X,AX) denote
as (X,u1

X) = H1(N) and (X,u2
X) = H2(N) the respective outcome

ultrametrics of methods H1 and H2. Construct then the dissimilarity
function A12

X (θ) as the convex combination of ultrametrics u1
X and u2

X ,

A12
X (x, x′; θ) = θ u1

X(x, x′) + (1− θ)u2
X(x, x′). (12)

While the dissimilarity function A12
X (θ) is not an ultrametric in general

because it may violate the strong triangle inequality, we can recover the
ultrametric structure by applying an admissible clustering method H to
the network N12

θ = (X,A12
X ) to obtain (X,uX) = H(N12

θ ). Notice
however that the network N12

θ is symmetric because the ultrametrics u1
X

and u2
X are symmetric and that, in such case, reciprocal and nonreciprocal

clustering yield the same outcome [1]. It then follows from Theorem 1
that the ultrametric uX is independent of the admissible methodH applied
to N12

θ . Thus, we define the convex combination method H12(θ) as the
one where the ultrametric (X,u12

X (θ)) = H12(N ; θ) corresponding to
network N = (X,AX) is given by

u12
X (x, x′; θ) = min

C(x,x′)
max

i|xi∈C(x,x′)
A12
X (xi, xi+1; θ), (13)

for all x, x′ ∈ X and A12
X as given in (12). The operation in (13) is

equivalent to the definition of single linkage applied to the symmetric
network N12

θ . It can be shown that (13) defines a valid ultrametric and
fulfills axioms (A1) and (A2) as stated in the following proposition.

Proposition 3 Given two admissible hierarchical clustering methods H1

and H2, the convex combination method H12(θ) with ultrametrics as in
(13) satisfies axioms (A1) and (A2).

Proof: See [14]. �

The construction in (13) can be generalized to a family of intermediate
clustering methods generated by arbitrary convex combinations of recip-
rocal, nonreciprocal, members of the grafting family of Section III-A,
members of the semi-reciprocal family to be introduced in Section III-C,
or any other admissible method. These arbitrary combinations can be
seen to satisfy axioms (A1) and (A2) through recursive application of
Proposition 3.

Remark 2 Since (13) is equivalent to single linkage applied to the
symmetric network N12

θ , it follows that the ultrametric u12
X (θ) in (13)

is the largest ultrametric uniformly bounded by A12
X (θ), i.e., the largest

ultrametric for which u12
X (x, x′; θ) ≤ A12

X (x, x′; θ) for all pairs x, x′.
We can then think of (13) as an operation ensuring a valid ultrametric
definition while retaining as much information as possible in the convex
combination of u1

X and u2
X .

C. Semi-reciprocal ultrametrics

In reciprocal clustering we require influence to propagate through
bidirectional chains; see Fig. 1. We could reinterpret bidirectional propa-
gation as allowing loops of node length two in both directions. E.g., the
bidirectional chain between x and x1 in Fig. 1 can be interpreted as a loop
between x and x1 composed by two chains [x, x1] and [x1, x] of node
length two. Semi-reciprocal clustering is a generalization of this concept
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Fig. 4. Semi-reciprocal chains. The main chain joining x and x′ is formed
by [x, x1, ..., xr, x′]. Between two consecutive nodes of the main chain xi and
xi+1, we have a secondary chain in each direction [xi, yi1, ..., yiki , xi+1] and
[xi+1, y

′
i1, ..., y

′
ik′i
, xi]. For uSR(l)

X (x, x′), the maximum allowed node length of
secondary chains is l, i.e., ki, k′i ≤ l − 2 for all i.

where loops consisting of at most l nodes in each direction are allowed.
Define as Cl(x, x′), l ∈ N, a chain [x = x0, x1, ... , xk−1 = x′] where
k ∈ N, 2 ≤ k ≤ l. In other words, Cl(x, x′) is a chain starting at x and
finishing at x′ with at most l nodes. For consistency, we require l ≥ 2,
since a chain joining two nodes must at least contain both extremes. We
reserve the notation C(x, x′) to represent a chain linking x with x′ where
no maximum is imposed on the amount of nodes in the chain. Given an
arbitrary network N = (X,AX), define as ASR(l)

X (x, x′) the minimum
cost of going from node x to node x′ using a chain of at most l nodes.
I.e.,

A
SR(l)
X (x, x′) = min

Cl(x,x
′)

max
k|xk∈Cl(x,x

′)
AX(xk, xk+1). (14)

We define the family of semi-reciprocal clustering methods HSR(l) with
output (X,u

SR(l)
X ) = HSR(l)(X,AX) as the one for which the ultrametric

value uSR(l)
X (x, x′) between points x and x′ is

u
SR(l)
X (x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
Ā

SR(l)
X (xi, xi+1) (15)

where the function ĀSR(l)
X (xi, xi+1) is defined as

Ā
SR(l)
X (xi, xi+1) = max

(
A

SR(l)
X (xi, xi+1), A

SR(l)
X (xi+1, xi)

)
.

The chain C(x, x′) of unconstrained length in (15) is denoted as the main
chain, represented by [x = x0, x1, ..., xr, xr+1 = x′] in Fig. 4. Between
consecutive nodes of the main chain xi and xi+1, we build loops con-
sisting of secondary chains in each direction, represented in Fig. 4 by
[xi, yi1, ..., yiki , xi+1] and [xi+1, y

′
i1, ..., y

′
ik′i
, xi] for all i. For the compu-

tation of uSR(l)
X (x, x′), the maximum allowed length of secondary chains is

equal to l nodes, i.e., ki, k′i ≤ l−2 for all i. In particular, for l = 2 we recover
the reciprocal chain depicted in Fig. 1.

We can reinterpret (15) as the application of reciprocal clustering [cf.
(5)] to a network with dissimilarities A

SR(l)
X as in (14), i.e., a network

with dissimilarities given by the optimal choice of secondary chains. Semi-
reciprocal clustering methods are valid and satisfy axioms (A1)-(A2) as shown
in the following proposition.

Proposition 4 The semi-reciprocal clustering method HSR(l) with ultramet-
rics as in (15) satisfies axioms (A1) and (A2) for all integers l ≥ 2.

Proof: See [14]. �

The semi-reciprocal is a countable family of clustering methods parameter-
ized by integer l representing the allowed maximum node length of secondary
chains. Reciprocal and nonreciprocal ultrametrics are equivalent to semi-
reciprocal ultrametrics for specific values of l. For l = 2 we have uSR(2)

X = uR
X

meaning that we recover reciprocal clustering. To see this formally, note that
ũ

SR(2)
X (x, x′) = AX(x, x′) [cf. (14)] since the only chain of length two joining
x and x′ is [x, x′]. Hence, for the case where l = 2, (15) reduces to

u
SR(2)
X (x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
ĀX(xi, xi+1), (16)

which is the definition of the reciprocal ultrametric [cf. (5)]. Nonreciprocal
ultrametrics can be obtained as u

SR(l)
X = uNR

X for any parameter l ≥ n

exceeding the number of nodes in the network. To see this, notice that
minimizing over C(x, x′) is equivalent to minimizing over Cl(x, x′) for all
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Fig. 5. Semi-reciprocal example. Computation of semi-reciprocal ultrametrics
between nodes x and x′ for different values of parameter l. uSR(2)

X (x, x′) = 4,
u

SR(3)
X (x, x′) = 3, uSR(4)

X (x, x′) = 2 and uSR(l)
X (x, x′) = 1 for all l ≥ 5; see

text for details.

l ≥ n, since we are looking for minimizing chains in a network with non
negative weights. Therefore, visiting the same node twice is not an optimal
choice. This implies that Cn(x, x′) contains all possible minimizing chains
between x and x′. In other words, all chains of interest have at most n nodes
or n− 1 hops. Hence, by inspecting (14), ũSR(l)

X (x, x′) = ũNR
X (x, x′) [cf. (6)]

for all l ≥ n. Furthermore, when l ≥ n, the best main chain that can be picked
is formed only by nodes x and x′ because, in this way, no additional meeting
point is enforced between the chains going from x to x′ and vice versa. As a
consequence, definition (15) reduces to

u
SR(l)
X (x, x′) = max

(
ũNR
X (x, x′), ũNR

X (x′, x)
)
, (17)

for all l ≥ n. The right hand side of (17) is the definition of the nonreciprocal
ultrametric [cf. (7)].

For the network in Fig. 5, we calculate the semi-reciprocal ultrametrics be-
tween x and x′ for different values of l. The undrawn edges have dissimilarity
values greater than the ones depicted in the figure. Since the only bidirectional
chain between x and x′ uses x3 as the intermediate node, we conclude that
uR
X(x, x′) = u

SR(2)
X (x, x′) = 4. Furthermore, by constructing a path through

the outmost clockwise cycle in the network, we conclude that uNR
X (x, x′) = 1.

Since the longest secondary chain in the minimizing path for the nonreciprocal
case, [x, x1, x2, x4, x′], has length 5, we may conclude that uSR(l)

X (x, x′) = 1

for all l ≥ 5. For intermediate values of l, if e.g., we fix l = 3, the minimizing
path is given by the main chain [x, x3, x′] and the secondary chains [x, x1, x3],
[x3, x4, x′], [x′, x5, x3] and [x3, x6, x] joining consecutive nodes in the main
chain in both directions. The maximum cost among all dissimilarities in this
path is AX(x1, x3) = 3. Hence, uSR(3)

X (x, x′) = 3. The minimizing path for
l = 4 is similar to the minimizing one for l = 3 but replacing the secondary
chain [x, x1, x3] by [x, x1, x2, x3]. In this way, we obtain uSR(4)

X (x, x′) = 2.

Remark 3 When propagating influence through a network, reciprocal clus-
tering requires bidirectional influence whereas nonreciprocal clustering allows
arbitrarily large unidirectional cycles. In many applications, such as trust prop-
agation in social networks, it is reasonable to look for an intermediate situation
where influence can propagate through cycles but of limited length. Semi-
reciprocal ultrametrics represent this intermediate situation with parameter l
accounting for the size of the influence cycles permitted.

IV. ALGORITHMS

In this section we interpret AX as a given matrix of dissimilarities and
uX as a symmetric matrix with entries corresponding to the ultrametric
uX(x, x′). As per (5), reciprocal clustering searches for chains that minimize
the maximum dissimilarity in the symmetric matrix ĀX := max(AX , A

T
X).

This is equivalent to finding chains in ĀX that have minimum cost as
measured in the infinity norm. Likewise, nonreciprocal clustering searches
for directed chains of minimum infinity norm cost in AX to construct the
matrix ũX [cf. (6)] and selects the maximum of the directed costs by
performing the operation uNR

X = max(ũX , ũ
T
X) [cf. (7)]. These operations

can be performed algorithmically using matrix powers in the dioid algebra
(R+ ∪ {+∞},min,max) [15].

In the dioid algebra (R+ ∪ {+∞},min,max) the regular sum is replaced
by the minimization operator and the regular product by maximization. Using
⊕ and ⊗ to denote sum and product on this dioid algebra we have a⊕ b :=

min(a, b) and a ⊗ b := max(a, b). The matrix product A ⊗ B is therefore
given by the matrix with entries[

A⊗B
]
i,j

=

n⊕
k=1

(
Ai,k ⊗Bk,j

)
= min

k∈[1,n]
max

(
Ai,k, Bk,j

)
. (18)



From the definition in (18), it follows that for given matrix A the lth dioid
power A(l) is such that its i, j entry [A(l)]i,j represents the minimum infinity
norm cost of a chain containing at most l hops. As discussed in Section III-C,
we can restrict candidate minimizing chains to those with at most n−1 hops,
entailing the following result.

Proposition 5 For given network N = (X,AX) with n nodes the reciprocal
ultrametric (X,uR

X) = HR(N) defined in (5) can be computed as

uR
X =

[
max

(
AX , A

T
X

) ](n−1)
, (19)

where the operation (·)(n−1) denotes the (n− 1)st matrix power in the dioid
algebra (R+ ∪{+∞},min,max) with matrix product as defined in (18). The
nonreciprocal ultrametric (X,uNR

X ) = HNR(N) defined in (7) can be computed
as

uNR
X = max

[
A

(n−1)
X ,

(
ATX
)(n−1)

]
. (20)

Proof: See [14]. �

For the reciprocal ultrametric we symmetrize dissimilarities with a maxi-
mization operation and take the (n − 1)st power of the resulting matrix on
the dioid algebra (R+ ∪ {+∞},min,max). For the nonreciprocal ultrametric
we revert the order of these two operations. We first consider matrix powers
A

(n−1)
X and

(
ATX
)(n−1) of the dissimilarity matrix and its transpose which

we then symmetrize with a maximization operator. Besides emphasizing the
relationship between reciprocal and nonreciprocal clustering, Proposition 5
suggests the existence of intermediate methods in which we raise dissimilarity
matrices AX and ATX to some power, perform a symmetrization, and then
continue matrix multiplications. These procedures yield methods that are
not only valid but coincide with the family of semi-reciprocal ultrametrics
introduced in Section III-C as the following proposition asserts.

Proposition 6 For a given network N = (X,AX) with n nodes the lth semi-
reciprocal ultrametric (X,u

SR(l)
X ) = HSR(l)(N) in (15) can be computed as

u
SR(l)
X =

[
max

(
A

(l−1)
X ,

(
ATX
)(l−1)

)](n−1)
. (21)

where (·)(l−1) and (·)(n−1) denote matrix powers in the dioid algebra (R+∪
{+∞},min,max) with matrix product as defined in (18).

Proof: See [14]. �

The result in (21) is intuitive. The powers A(l−1)
X and

(
ATX
)(l−1) represent

the minimum infinity norm cost among directed chains of at most l− 1 hops.
In terms of Section III-C, these are the cost of the optimal secondary chains
of at most l nodes. Therefore the maximization max

(
A

(l−1)
X ,

(
ATX
)(l−1) )

computes the cost in both directions of joining two given nodes with secondary
chains of at most l nodes, i.e. ĀSR(l)

X in (15). Applying the dioid power
(n − 1) to this new matrix is equivalent to looking for minimizing chains
in the network with costs given by the secondary chains, i.e., the dioid
power computes the cost of the optimal main chain, as described in Section
III-C. Observe that we recover (19) by making l = 2 in (21). Also, it can
be shown that (20) is equivalent to (21) when l = n. Thus, the results in
propositions 5 and 6 further emphasize the extremal nature of the reciprocal
and nonreciprocal methods and characterize the semi-reciprocal ultrametrics
as natural intermediate clustering methods in an algorithmic sense.

This algorithmic perspective allows for a generalization in which the powers
of the matrices AX and ATX are different. To be precise, consider strictly
positive integers l, l′ > 0 and define the algorithmic intermediate clustering
method Hl,l′ with parameters l, l′ as the one that maps the given network
N = (X,AX) to the output ultrametric (X,ul,l

′

X ) = Hl,l′ (N) given by

ul,l
′

X = max
[
A

(l)
X ,
(
ATX
)(l′)](n−1)

. (22)

The ultrametric (22) can be interpreted as a semi-reciprocal ultrametric where
the allowed length of secondary chains varies with the direction. Forward
secondary chains may have at most l+ 1 nodes whereas backward secondary
chains may have at most l′ + 1 nodes. The algorithmic intermediate family
Hl,l′ encapsulates the semi-reciprocal family sinceHl,l ≡ HSR(l+1) as well as
the reciprocal method since HR ≡ H1,1 as it follows from comparison of (22)

with (21) and (19), respectively. It can also be shown that HNR ≡ Hn−1,n−1.

The intermediate algorithmic methods Hl,l′ are admissible as we claim in the
following proposition.

Proposition 7 The hierarchical clustering method Hl,l′ with ultrametrics as
in (22) satisfies axioms (A1) and (A2).

Proof: See [14]. �

Algorithms to compute ultrametrics associated with the grafting families in
Section III-A entail simple combinations of matrices uR

X and uNR
X . E.g., the

ultrametrics in (9) corresponding to the grafting method HR/NR(β) can be
computed as

u
R/NR
X (β) = uNR

X ◦ I
{
uR
X ≤ β

}
+ uR

X ◦ I
{
uR
X > β

}
(23)

where A ◦B denotes the Hadamard product of matrices A and B and I {·} is
a point wise indicator function.

Algorithms for the convex combination family in Section III-B involve com-
puting dioid algebra powers of a convex combination of ultrametric matrices.
Given two admissible methods with output ultrametrics (X,u1X) = H1(N)

and (X,u2X) = H2(N), and a scalar 0 ≤ θ ≤ 1, the ultrametric in (13)
corresponding to the method H12(θ) can be computed as

u12X (θ) =
(
θ u1X + (1− θ)u2X

)(n−1)
. (24)

Remark 4 It follows from (19), (20) and (21) that methods in this paper are
computationally tractable as the total number of operations is of order n4.
This complexity can be reduced to n3 logn by noting that the dioid matrix
power An can be computed with the sequence A,A2, A4, . . ., which requires
o(logn) matrix products at a cost of o(n3) each.

Remark 5 In the dioid algebra (R+∪{+∞},min,max), it can be shown that
a matrix A satisfies the strong triangle inequality if and only if A = A(2) [15].
Furthermore, for a nonnegative matrix with null diagonal, A(n−1) = A(n).
Hence, the dioid matrix powers in (19)-(22) and (24) ensure a valid ultrametric
definition. This makes the aforementioned dioid algebra an adequate tool to
study algorithms for hierarchical clustering methods.
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