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DISTANCE FUNCTIONS AND GEODESICS
ON SUBMANIFOLDS OF Rd AND POINT CLOUDS∗

FACUNDO MÉMOLI† AND GUILLERMO SAPIRO†

Abstract. A theoretical and computational framework for computing intrinsic distance func-
tions and geodesics on submanifolds of Rd given by point clouds is introduced and developed in this
paper. The basic idea is that, as shown here, intrinsic distance functions and geodesics on general
co-dimension submanifolds of Rd can be accurately approximated by extrinsic Euclidean ones com-
puted inside a thin offset band surrounding the manifold. This permits the use of computationally
optimal algorithms for computing distance functions in Cartesian grids. We use these algorithms,
modified to deal with spaces with boundaries, and obtain a computationally optimal approach also
for the case of intrinsic distance functions on submanifolds of Rd. For point clouds, the offset band is
constructed without the need to explicitly find the underlying manifold, thereby computing intrinsic
distance functions and geodesics on point clouds while skipping the manifold reconstruction step.
The case of point clouds representing noisy samples of a submanifold of Euclidean space is studied
as well. All the underlying theoretical results are presented along with experimental examples for
diverse applications and comparisons to graph-based distance algorithms.
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1. Introduction. One of the most popular sources of point clouds are three-
dimensional (3D) shape acquisition devices, such as laser range scanners, with appli-
cations in geoscience, art (e.g., archival study), medicine (e.g., prosthetics), manufac-
turing (from cars to clothes), and security (e.g., recognition), among other disciplines.
These scanners generally provide raw data in the form of (noisy) unorganized point
clouds representing surface samples, and often produce very large numbers of points
(tens of millions, for example, for the David model used in this paper). With the in-
creasing popularity and very broad applications of this source of data, it is natural and
important to work directly with such representations, without having to go through
the intermediate step of fitting a surface to each (a step that can add computational
complexity and introduce errors). See, for example, [11, 18, 20, 29, 33, 45, 46, 56, 58]
for a few recent works with this type of data. Note that point clouds can also be used
as primitives for visualization (e.g., [12, 33, 59]), as well as for editing [72].

Another important field where point clouds are found is in the representation of
high-dimensional manifolds by samples (see, for example, [36, 44, 67]). This type of
high-dimensional and general codimensional data appears in almost all disciplines,
from computational biology to image analysis and financial data. Due to the ex-
tremely high number of dimensions in this case, it is impossible to perform manifold
reconstruction, and the work needs to be done directly on the raw data, meaning the
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point cloud. Also in this area, large amounts of data are becoming available, from
neuroscience experiments with neural recording of millions of points to large image
and protein databases.

Note that in general a point cloud representation is codimension free, in contrast
with other popular representations such as triangular meshes. Some operations, such
as the union of point clouds acquired from multiple views, are much easier when per-
formed directly on the representations than when performed on the triangular meshes
obtained from them. This paper addresses one of the most fundamental operations
in the study and processing of submanifolds of Euclidean space, the computation of
intrinsic distance functions and geodesics. We show that these computations can be
made by working directly with the point cloud, without the need for reconstructing
the underlying manifold. Even if possible (for example, at low dimensions), the mesh-
ing operation is avoided, saving computations and improving accuracy. The distance
computation itself is performed in computationally optimal time. We present the
corresponding theoretical results, experimental examples, and basic comparisons to
mesh-based distance algorithms.1 The results are valid for general dimensions and
codimensions, and for (underlying) manifolds with or without boundary. These re-
sults include the analysis of noisy point clouds obtained from sampling the manifold.
We provide bounds on the accuracy of the computations that depend on the sampling
rate and pattern as well as on the noise, thereby addressing real manifold sampling
scenarios.

A number of key building blocks are part of the framework introduced here. The
first one is based on the fact that distance functions intrinsic to a given submanifold
of Rd can be accurately approximated by Euclidean distance functions computed in
a thin offset band that surrounds this manifold. This concept was first introduced in
[49], where convergence results were given for hypersurfaces (codimension one sub-
manifolds of Rd) without boundary. This result is reviewed in section 2. In this paper,
we first extend these results to general codimensions and deal with manifolds with or
without boundary in section 3. Interestingly, we also show that the approximation is
true not only for the intrinsic distance function but also for the intrinsic minimizing
geodesic.

The approximation of intrinsic distance functions (and geodesics) by extrinsic
Euclidean ones permits us to compute them using computationally optimal algorithms
in Cartesian grids (as long as the discretization operation is permitted, memorywise;2

see sections 7.1 and 8). These algorithms are based on the fact that the distance
function satisfies a Hamilton–Jacobi partial differential equation (see section 2), for
which consistent and fast algorithms have been developed in Cartesian grids [35, 62,
63, 69].3 (See [40] for extensions to triangular meshes, and [68] for other Hamilton–
Jacobi equations.) That is, due to these results, we can use computationally optimal
algorithms in Cartesian grids (with boundaries) also to compute distance functions,
and from them geodesics,4 intrinsic to a given manifold, and in a computationally

1Theoretical results on the accuracy of the technique for 3D mesh-based computationally optimal
distance computation proposed in [40] have not been reported to the best of our knowledge.

2This is of course just a limitation of a straightforward implementation that doesn’t avoid allo-
cating memory to empty grids and works in the embedding dimension, and not a limitation of the
theoretical and computational frameworks here developed.

3Tsitsiklis first described an optimal-control type of approach to solving the Hamilton–Jacobi
equation, while independently Sethian and Helmsen both developed techniques based on upwind
numerical schemes.

4Geodesics are the integral curves corresponding to the gradient directions of the intrinsic distance
function, and are obtained by back-propagating in this gradient direction from the target point to
the source point.
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optimal fashion. Note that, in contrast with the popular Dijkstra algorithm, these
numerical techniques are consistent; they converge to the true distance when the grid
is refined. Dijkstra’s algorithm suffers from digitization bias due to metrication error
when implemented on a grid (if no new graph edges are added to account for the new
diagonals in each successive level of refinement of the grid); see [52, 53].

Once these basic results are available, we can then move on and deal with point
clouds. The basic idea here is to construct the offset band directly from the point
cloud, without the intermediate step of manifold reconstruction.5 This is addressed in
section 4 and section 5 for noise-free points and manifold samples, and in section 6 for
points considered to be noisy samples of the manifold. In these cases, we explicitly
compute the probability that the constructed offset band contains the underlying
manifold. As we expect, this probability is a function of the number of point samples,
the noise level, the size of the offset, and the basic geometric characteristics of the
underlying manifold. This then covers the most realistic scenario, where the manifold
is randomly sampled and the samples contain noise, thereby providing bounds that
relate the error to the quality of the data. In the experimental section, section 7, we
present a number of important applications. These applications are given to show the
importance of this novel computational framework, and are by no means exhaustive.
The data used in these examples were obtained from real acquisition devices, following
laser scanning and photometric stereo. Concluding remarks are presented in section
8, where we also report the directions our research is taking.

To conclude this introduction, we should note that, to the best of our knowledge,
the only additional work explicitly addressing the computation of distance functions
and geodesics for point clouds is the one reported in [9, 67].6 The comparison of
performance in the presence of noise for our framework and the one proposed in
[9, 67] is deferred to Appendix A.7

2. Preliminary results and notation. In this section we briefly review the
main results in [49], where the idea of approximating intrinsic distances and geodesics
by extrinsic ones was first introduced.

2.1. Notation. First, we introduce some basic notation that will be used through-
out the article. For a compact and connected set Ω ∈ Rd, dΩ(·, ·) denotes the intrinsic
distance between any two points of Ω, measured by paths constrained to be in Ω. We
will also assume the convention that if A ⊂ Rd is compact, and x, y are not both in A,
then dA(x, y) = D for some constant D � maxx,y∈A dA(x, y). Given a k-dimensional
submanifold M of Rd, Ωh

M denotes the set {x ∈ Rd : d(M, x) ≤ h} (here the distance
d(·, ·) is the Euclidean one). This is basically an h-offset of M. To state that the
sequence of functions {fn(·)}n∈N uniformly converges to f(·) as n ↑ ∞, we frequently

write fn
n

⇒ f . For a given event E, P (E) stands for its probability of occurring. For
a random variable (R.V. from now on) X, its mean value is denoted by E (X). By

5Recent results such as those reported in [57] provide efficient techniques for constructing such
bands for point cloud data.

6In addition to studying the computation of distance functions on point clouds, [9, 67] address
the important combination of this with multidimensional scaling for manifold analysis. Prior work
on using geodesics and multidimensional scaling can be found in [61].

7While concluding this paper, we learned of a recent extension to Isomap reported in [31]. This
paper is also mesh-based, and follows the geodesics approach in Isomap with a novel neighbor-
hood/connectivity approach and a number of interesting theoretical results and novel dimensionality
estimation contributions. Further analysis of Isomap, as a dimensionality reduction technique, can
be found in [19].
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X ∼ U[A] we mean that the R.V. X is uniformly distributed in the set A. For a
function f : Ω → R and a subset A of Ω, f |A : A → R denotes the restriction of
f to A. For a smooth function f : Ω → R, Df , D2f , and D3f stand for the first,
second (Hessian matrix), and third differential, respectively, of f . Given a point x on
the complete manifold S, BS(x, r) will denote the (intrinsic) open ball of radius r > 0
centered at x, and B(y, r) will denote the Euclidean ball centered at y of radius r.
Finally, log x will denote the natural logarithm of x ∈ R+.

2.2. Prelude. In [49], we presented a new approach for the computation of
weighted intrinsic distance functions on hyper-surfaces. We proved convergence theo-
rems and addressed the fast, computationally optimal, computation of such approxi-
mations; see comments after Theorem 1 below. The key starting idea is that distance
functions satisfy the (intrinsic) Eikonal equation, a particular case of the general class
of Hamilton–Jacobi partial differential equations. Given p ∈ S (a hypersurface in Rd),
we want to compute dS(p, ·) : S → R+∪{0}, the intrinsic distance function from every
point on S to p. It is well known that the distance function dS(p, ·) satisfies, in the
viscosity sense (see [47]), the equation{

‖∇SdS(p, x)‖ = 1 ∀x ∈ S,
dS(p, p) = 0,

where ∇S is the intrinsic differentiation (gradient). Instead of solving this intrinsic
Eikonal equation on S, we solve the corresponding extrinsic one in the offset band Ωh

S:{ ‖∇xdΩh
S
(p, x)‖ = 1 ∀x ∈ Ωh

S;

dΩh
S
(p, p) = 0,

where dΩh
S
(p, ·) is the Euclidean distance and therefore now the differentiation is the

usual one.
Theorem 1 (see [49]). Let p and q be any two points on the smooth (orientable,

without boundary) hypersurface S; then
∣∣dS(p, q)−dΩh

S
(p, q)

∣∣ ≤ CS

√
h for small enough

h,8 where CS is a constant depending on the geometry of S.
This simplification of the intrinsic problem into an extrinsic one permits the use

of the computationally optimal algorithms mentioned in the introduction. This makes
computing intrinsic distances, and from them geodesics, as simple and computation-
ally efficient as computing them in Euclidean spaces. Moreover, as detailed in [49],
the approximation of the intrinsic distance dS by the extrinsic Euclidean one dΩh

S
is

never less accurate than the numerical error of these algorithms.
In [49], the result above was limited to hypersurfaces of Rd (codimension one

submanifolds of Rd) without boundary, and the theory was applied to implicit surfaces,
where computing the offset band is straightforward. It is the purpose of the present
work to extend Theorem 1 to deal with (1) submanifolds of Rd of any codimension and
possibly with boundary,9 (2) convergence of geodesic curves in addition to distance
functions, (3) submanifolds of Rd represented as point clouds and (4) random sampling
of submanifolds of Rd in the presence of noise. We should note that Theorem 1 holds
even when the metric is not the one inherited from Rd, obtaining weighted distance

8“Small enough h” means that h < 1/maxi κi(S), where κi(S) is the ith principal curvature of
S. This guarantees having smoothness in ∂Ωh

S ; see [49].
9We will later impose some convexity conditions on the boundary in order to get rate of conver-

gence estimates. However, the uniform convergence in itself doesn’t require other hypotheses beyond
smoothness.
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functions; see [49]. Although we will not present these new results in such generality,
this is a simple extension that will be reported elsewhere.

3. Submanifolds of Rd with boundary. We first extend Theorem 1 to more
general manifolds, and we deal not only with distance functions but also with geodesics.
The first extension is important for the learning of high-dimensional manifolds from
samples and for scanned open volumes. The extension to geodesics is important for
path planning on surfaces and for finding special curves such as crests and valleys;
see [8, 49].

First we need to recall some results that will be key ingredients in our proofs below.
All our results rest upon a certain degree of smoothness of geodesics in manifolds with
boundary. We use “shortest path” and “minimizing geodesic” interchangeably.

Theorem 2 (see [1]). Let M be a C3 Riemannian manifold with C1 boundary
∂M. Then any shortest path of ∂M is C1.

We will eventually need more regularity on the geodesics than simply C1. This
is achieved by requiring more regularity of the boundary.

Theorem 3 ([48]). Let U : Rd → R be a C3 function such that for some h ∈ R
(i) the interior of {x ∈ Rd|U(x) = h} is nonempty and there we have DU(x) �=

0.
(ii) the “obstacle” {x ∈ Rd|U(x) ≥ h} is compact.

Let p and q be any two points in the same connected component of {x ∈ Rd|U(x) ≤ h};
then the shortest (constrained) path joining both points is C1 and has Lipschitz first
derivative.

We now present the usual definition of length, as follows.
Definition 1. Let α : [a, b] → Rd be a curve, then we define its length L (α) as

L (α)
�
= sup

a=t0<···<tN=b

N−1∑
k=0

‖α(tk+1) − α(tk)‖.

Remark 1. Note that if α is Lipschitz with constant Lα, then L (α) =
∫ b
a
‖α̇(t)‖dt

and L (α) ≤ Lα (b− a).
Proposition 1. Let S be a smooth compact submanifold of Rd with boundary

∂S. Let x, y be any two points in S. Then dΩh
S
(x, y) converges pointwise as h ↓ 0.

Proof. Since Ωh
S ⊆ Ωh′

S if h′ ≥ h, we have that dΩh
S
(x, y) ≥ dΩh′

S
(x, y) Also, for any

h > 0, dΩh
S
(x, y) ≤ dS(x, y) ≤ diam(S) < +∞. Hence, the sequence {dΩh

S
(x, y)}h>0

(for fixed x and y over S) is bounded and nondecreasing, and therefore it converges
to the supremum of its range.

Theorem 4. Let S be a compact C2 submanifold of Rd with (possibly empty)
smooth boundary ∂S. Let x, y be any two points in S. Then we have

1. uniform convergence of the distances:

dΩh
S
|S×S(·, ·)

h↓0
⇒ dS(·, ·);

2. convergence of the geodesics: Let x and y be joined by a unique minimizing
geodesic γS : [0, 1] → S over S, and let γh : [0, 1] → Ωh

S be a Ωh
S-minimizing geodesic;

then

γh
h↓0
⇒ γS.
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Proof. Given our hypothesis on S, and according to [26], there exists H > 0 such
that ∂Ωh

S is C1,1 for all 0 < h ≤ H. Then Theorem 2 guarantees that for 0 < h ≤ H,
γh : [0, 1] → ΩH

S , the Ωh
S length-minimizing geodesic joining x and y is of class C1.

Since dΩh
S
(x, y) ≤ dS(x, y) ≤ diam(S) < +∞ for any h ∈ (0, H], we see that we

can admit our Ωh
S-geodesics to have Lipschitz constant L ≤ diam(S). Obviously, the

set ΩH
S is bounded, and then the family {γh}0<h≤H is bounded and equicontinuous.

Hence, by the Ascoli–Arzelá theorem, there exist a subsequence {γhk
}k∈N and a curve

γ0 ∈ C0([0, 1], S) such that maxt∈[0,1] ‖γhk
(t) − γ0(t)‖

hk↓0−→ 0.

Moreover, by writing |γ0(t)−γ0(t
′)| ≤ |γhk

(t)−γ0(t)|+ |γhk
(t′)−γ0(t

′)|+L|t− t′|
and using the (pointwise) convergence of γhk

towards γ0, we find that L is also a
Lipschitz constant for γ0. Then we have γ0 ∈ C0,1([0, 1], S).

Now, since γ0 lies on S but may not be a shortest path, we have that its (fi-
nite) length is greater than or equal to dS(x, y). We also have the trivial inequality
dS(x, y) ≥ dΩh

S
(x, y). Putting this all together, we obtain

L (γh) = dΩh
S
(x, y) ≤ dS(x, y) ≤ L (γ0) .

Therefore

lim sup
h↓0

L (γh) = lim sup
h↓0

dΩh
S
(x, y) ≤ dS(x, y) ≤ L (γ0) .

Note that L (γ0) = L (limhk↓0 γhk
) ≤ lim infhk↓0 L (γhk

). This is the semicontinuity
of length, an immediate consequence of its definition; see [41].

Since lim infhk↓0(·) ≤ lim suphk↓0(·) ≤ lim suph↓0(·), we see that lim suph↓0 dΩh
S
(x, y)

= lim suph↓0 L (γh) equals dS(x, y) for all x and y in S. From Proposition 1, we find
that in fact limh↓0 dΩh

S
(x, y) exists and equals dS(x, y). Then, we have that the func-

tion dΩh
S
|S×S(·, ·) satisfies the following:

(i) dΩh
S
|S×S : S × S → R ∪ {0} is continuous for each H > h > 0;

(ii) for each (x, y) ∈ S × S, {dΩh
S
|S×S (x, y)}h is nondecreasing;

(iii) dΩh
S
|S×S (·, ·) converges pointwise towards dS(·, ·), which is continuous.

Then by Dini’s uniform convergence theorem (see [6]) we can conclude that the con-
vergence is uniform.

We can also see that γ0 must be a minimizing geodesic of S since from the above
chain of equalities L (γ0) = dS(x, y). Then, if there was only one such curve joining x
with y, we would have uniform convergence (along any subsequence!) of γh towards
γ0.

10

Remark 2. In Theorem 4, the convergence (of distances) is uniform, but we will
have forfeited rate of convergence estimates unless we impose additional conditions on
∂S, as we do in Corollary 3. Note that the new setting is wider than the one considered
in Theorem 1 since the codimension of the underlying manifold is not necessarily 1.
This is very important for applications such as dimensionality reduction, where the
dimension of the underlying manifold is unknown beforehand.

Corollary 1. Let S and ∂S satisfy the hypotheses of Theorem 4. Let {Σi}i∈N be

a family of compact of sets in Rd such that S ⊆ Σi for all i ∈ N and dH(Σi, S)
i↑+∞−→ 0.

10This follows from the fact that uniform convergence of γh to γ0 is equivalent to the statement
that for any subsequence {γhi

} there exists a further subsubsequence {γhik
} uniformly converging

to γ0.
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Then,

dΣi
(·, ·) |S×S

i↑+∞
⇒ dS(·, ·),

where dH stands for the Hausdorff distance between sets.
We now present a uniform rate of convergence result for the distance in the band

in the case ∂S = ∅, and from this we deduce Corollary 3 below, which deals with the
case ∂S �= ∅. This result generalizes the one presented in [49] because it allows for
any codimension.

Theorem 5. Under the hypotheses of Theorem 4, with ∂S = ∅, we have that for
small enough h > 0,

max
(x,y)∈S×S

∣∣∣dΩh
S
|S×S(x, y) − dS(x, y)

∣∣∣ ≤ CS

√
h,(1)

where the constant CS does not depend on h. Also, we have the “relative” rate of
convergence bound

1 ≤ sup
x,y∈ S
x�=y

dS(x, y)

dΩh
S
(x, y)

≤ 1 + CS

√
h.(2)

Proof. This is a remake of our proof of the main theorem in [49]; therefore we
skip some technical details which can be found there. Throughout the proof we will
sometimes write dh instead of dΩh

S
for the sake of notational simplicity. We will denote

by k (≤ n− 1) the dimension of S.
Let γ0 be the arc length parametrized S-shortest path joining the points x, y ∈ S;

clearly, we have trace(γ0) ⊂ S. Let γh be the Ωh
S arc length parametrized shortest

path joining x and y, which, as we know from Theorem 4, uniformly converges toward
γ0. For a number H as in the proof of Theorem 4, we have γh ∈ C1,1([0, dh], S), and

also η : ΩH
S → R defined by η(x)

�
= 1

2d
2(x, S) is smooth; see Appendix B. We define

the projection operator ΠS : ΩH
S → S by ΠS(x) = x−Dη(x). We refer the reader to

Appendix B for properties of ΠS and η which we use below.
Now, dΩh

S
(x, y) = L (γh) ≤ dS(x, y) ≤ L (ΠS(γh)); then

dS(x, y) − dΩh
S
(x, y) ≤ |L (ΠS(γh)) − L (γh)|

≤
∫ dh

0

∥∥∥ ˙
ΠS(γh(t)) − γh(t)

∥∥∥ dt

=

∫ dh

0

∥∥∥ ˙
Dη(γh(t))

∥∥∥ dt

≤

√
dh

∫ dh

0

V̇ (t) · V̇ (t) dt (by Cauchy–Schwarz inequality)

≤

√
dh

∫ dh

0

V (t) · V̈ (t) dt (integrating by parts; see below),

where V (t)
�
= Dη(γh(t)) and V (0) = V (1) = 0; see Appendix B.

Also V̇ (t) = D2η(γh(t))γ̇(t), and since γ̇h is Lipschitz and η is smooth, V̈ (t) exists
almost everywhere and V̈ (t) = D3η(γh(t))[γ̇h(t), γ̇h(t)] + D2η(γh(t))γ̈(t) at points of
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existence. Then since D3ηDη = D2η(II −D2η) and D2ηDη = Dη (see Appendix B),

V · V̈ = D3η(γh)[Dη(γh), γ̇h, γ̇h] + D2η[γ̈h, Dη(γh)]

=
(
D2η(γh)

(
II −D2η(γh)

))
[γ̇h, γ̇h] + γ̈h ·Dη(γh).

The matrix Λ(t)
�
= D2η(γh(t))(II−D2η(γh(t))) filters out normal components and

has eigenvalues associated with the tangential bundle given by

λi(t) =
d(t)λi(0)

(1 + d(t)λi(0))
2 for 1 ≤ i ≤ k,

where we let d(t) = d(γh(t), S). Note that max1≤i≤k|λi(t)| can be bounded by d(t)
times a certain finite constant K ′ independent of h.

On the other hand, we can bound |γ̈h(t)| almost anywhere by a finite constant,
say K, which takes into account the maximal curvature of all the boundaries ∂Ωh

S,
0 < h < H, but does not depend on h.

Putting all this together, we find (recall that ‖Dη(x)‖ =
√

2η(x) = d(x, S); see
Appendix B)

(
dS(x, y) − dΩh

S
(x, y)

)2

≤ dh

∫ dh

0

Λ(t)[γ̇h, γ̇h]dt

+ dh

∫ dh

0

‖γ̈h‖ ‖Dη(γh)‖dt

≤ K ′ max
t∈[0,dh]

d(t) d2
h + K max

t∈[0,dh]
d(t)d2

h.

Now, remembering that dh stands for dΩh
S
(x, y), that trace(γh) ⊂ Ωh

S, and defining

C = K + K ′, we arrive with only a little simple additional work, at the relations (1)
or (2).

Remark 3. Note that, as the simple case of a circle in the plane shows, the rate
of convergence is at most C · h.

We immediately obtain the following corollary, which will be useful ahead.
Corollary 2. Let p ∈ S and r ≤ H; then B(p, r) ∩ S ⊆ BS(p, r(1 + CS

√
r)).

Proof. Let q ∈ B(p, r)∩ S; then by (2), dS(p, q) ≤ dΩr
S
(p, q)(1 +CS

√
r). However,

q ∈ B(p, r) ⊂ Ωr
S, and thus dΩh

S
(p, q) = ‖p− q‖ ≤ r, which completes the proof.

Definition 2. (see [21]) We say that the compact manifold S with boundary
∂S is strongly convex if for every pair of points x and y in S there exists a unique
minimizing geodesic joining them whose interior is contained in the interior of S.

Using basically the same procedure as in Theorem 5 with the convexity hypotheses
above, we can prove the following corollary, whose (sketched) proof is presented in
Appendix C.

Corollary 3. Under the hypotheses of Theorem 2, and assuming S to be strongly
convex, we have for small enough h > 0 the same conclusions of Theorem 5 (rate of
convergence).

Remark 4. Note that in case ∂S �= ∅ is not strongly convex, then obviously the
same statement of Corollary 3 remains valid for any strongly convex subset of S.

To conclude, in this section we extended the results in [49] to geodesics and dis-
tance functions in general codimension manifolds with or without (smooth) boundary,
thereby covering all possible manifolds in common shape, graphics, visualization, and



GEODESIC DISTANCE ON POINT CLOUDS 1235

learning applications.11 We are now ready to extend this to manifolds represented as
point clouds.

4. Distance functions on point clouds. We are now interested in making
computations on manifolds represented as point clouds, i.e., sampled manifolds. In
the case of this paper we will restrict ourselves to the computation of intrinsic dis-

tances.12 Let Pn
�
= {p1, . . . , pn} be a set of n different points sampled from the

compact submanifold S and define13

Ωh
Pn

�
=

n⋃
i=1

B(pi, h).

Let h and Pn be such that S ⊆ Ωh
Pn

. We then have (S ⊆)Ωh
Pn

⊆ Ωh
S. We now want to

consider dΩh
P
(p, q) for any pair of points p, q ∈ S and prove some kind of proximity to

the real distance dS(p, q). The argument carries over easily since

dΩh
S
(p, q) ≤ dΩh

Pn
(p, q) ≤ dS(p, q),

and hence

0 ≤ dS(p, q) − dΩh
Pn

(p, q) ≤ dS(p, q) − dΩh
S
(p, q),(3)

and the rightmost quantity can be bounded by CS h1/2 (see section 3) in the case that
∂S is either convex or void. In general, without hypotheses on ∂S other than some
degree of smoothness, we can also work out uniform convergence since by virtue of
Theorem 4 the upper bound in (3) uniformly converges to 0. The key condition is
S ⊂ ΩPh

n
, something that can obviously be coped with using the compactness of S.14

We can then state the following claim.
Theorem 6 (uniform convergence for point clouds). Let S be a compact smooth

submanifold of Rd possibly with boundary ∂S. Then the following hold:
1. General case: Given ε > 0, there exists hε > 0 such that for all 0 < h ≤ hε

one can find finite n(h) and a set of points Pn(h)(h) = {p1(h), . . . , pn(h)(h)} sampled
from S such that

max
p,q∈S

(
dS(p, q) − dΩh

Pn(h)(h)
(p, q)

)
≤ ε.

2. ∂S is either void or convex: For every sufficiently small h > 0 one can find
finite n(h) and a set of points Pn(h)(h) = {p1(h), . . . , pn(h)(h)} sampled from S such
that

max
p,q∈S

(
dS(p, q) − dΩh

Pn(h)(h)
(p, q)

)
≤ CS

√
h.

11Although in this paper we consider only manifolds with constant codimension, many of the
results are extendible to variable codimensions, and this will be reported elsewhere.

12Note that having the intrinsic distance allows us to compute basic intrinsic properties of the
manifold; see e.g., [13].

13The balls now used are defined with respect to the metric of Rd; they are not intrinsic.
14By compactness, given h > 0, we can find finite N(h) and points p1, p2, . . . , pN(h) ∈ S such that

S = ∪N(h)
i=1 BS(pi, h). But since for p ∈ S, BS(p, h) ⊂ B(p, h) ∩ S, we also get S ⊂ ∪N(h)

i=1 B(pi, h).
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In practice, one must worry about both the number of points and the radii of
the balls. Obviously, there is a tradeoff between both quantities. If we want to use
few points, in order to cover S with the balls we have to increase the value of the
radius. Clearly, there exists a value H such that for values of h smaller than H we do
not change the topology; see [3, 4, 5]. This implies that the number of points must
be larger than a certain lower bound. This result can be generalized to ellipsoids
which can be locally adapted to the geometry of the point cloud [15], or from minimal
spanning trees. Note that we are interested in the smallest possible offset of the point
cloud that covers S. Further comments on this are presented below and are also the
subject of current efforts to be reported elsewhere.

The practical significance of the previous Theorem is clear. Part 1 says that
in general, given a desired precision for the computation of the distance, we have a
maximum nonzero value for the radius of all the balls, below which we can always find
a finite number of points sampled from the manifold for which the “Ω-set” formed by
those points achieves the desired accuracy;15 that is, we can choose the radius at our
convenience within a certain range which depends on this level of accuracy. Part 2
says more, since it actually links ε to hε. It basically says that the radius of the balls
must be of the order of the square of the desired error.

5. Extension to random sampling of manifolds. In practice, we really do
not have too much control over the way in which points are sampled by the acquisition
device (e.g., scanner) or given by the learned sampled data. Therefore it is more
realistic to make a probabilistic model of the situation and then try to conveniently
estimate the probability of achieving a prescribed level of accuracy as a function of the
number of points and the radii of the balls. It will be interesting to see how geometric
quantities of S enter in those bounds we will establish. However, since the bounds
are based in local volume computations and all manifolds are locally Euclidean, those
curvature dependent quantities will be asymptotically negligible.

We now present a simple model for the current setting, while results for other
models can be developed from the derivations below. Here we assume that the points
in Pn are independently and identically sampled on the submanifold S with the uni-
form probability law;16 we will write this as pi ∼ U[S]. For simplicity of exposition,
we will restrict ourselves to the case when S has no boundary.17 Also, we deal only
with uniform independently and identically distributed (i.i.d.) sampling; results for
other sampling models, including those adapted to the manifold geometry, can be
easily obtained following the developments below and will be reported elsewhere.

We have to define the way in which we are going to measure accuracy. A possibility
for such a measure is (for each ε > 0)

P

(
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)
.(4)

There is a potential problem with this way of testing accuracy, since we are
assuming that when we use the approximate distance, we will be evaluating it on S.
This might seem a bit awkward since we don’t exactly know all the surface but just

15We are considering the case when all the balls have the same radii.
16This means that for any subset A ⊆ S and any pi ∈ Pn, P (pi ∈ A) = µ(A)

µ(S)
, where µ (·) stands

for the measure (area/volume) of the set.
17In order to extend the results in this section to the case ∂S �= ∅, the same considerations

discussed in [9] remain valid in our case.
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some points on it. Moreover, a more natural and real-problem-motivated approach
would be to measure the discrepancy over Pn itself (see section 7 ahead), over part of
this set, or over another trial set of points Qm.

However, since for any set of points Qm ⊂ S we have that the following inclusion
of events,{

max
p,q∈Qm

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

}
⊆
{

max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

}
,

holds, bounding (4) suffices for dealing with any of the possibilities mentioned above.
Note that we are somehow considering dΩh

Pn
defined for all pairs of points in S × S,

even if it might happen that S∩Ωh
Pn

�= S. In any case we extend dΩh
Pn

to all Ωh
S ×ΩS

by a large constant, say k diam(S), k � 1.
Let us spell out a few definitions so as to avoid an overload of notation:

Eε
�
=

{
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

}
,(5)

Ih,n
�
=
{
S ⊆ Ωh

Pn

}
.(6)

Now, since Eε = (Eε ∩ Ih,n) ∪ (Eε ∩ Ich,n), using the union bound and then Bayes
rule, we have

P (Eε) ≤ P (Eε ∩ Ih,n) + P
(
Eε ∩ Ich,n

)
= P (Eε | Ih,n) P (Ih,n) + P

(
Eε | Ich,n

)
P
(
Ich,n
)

⇓

P (Eε) ≤ P (Eε | Ih,n) + P
(
Ich,n
)
.(7)

It is clear now that we must find a convenient lower bound for the second term in
the previous expression, the probability of covering all S with the union of balls. (The
first term will be dealt with using the convergence theorems presented in previous
sections.) For this we need a few lemmas.

Lemma 1. Let K be an upper bound for the sectional curvatures of S (diam(S) =
k) and x ∈ S be a fixed point. Then, under the hypotheses on Pn described above,

there exist a constant ωk > 0 and a function θS(·) with limh↓0
θS(h)
hk+1 = 0 such that for

small enough h > 0

P
({

x /∈ Ωh
Pn

∩ S
})

≤
(

1 − ωk h
k + θS(h)

µ (S)

)n

.(8)

Moreover, one can further expand the right-hand side of (8) as(
1 − ωkh

k(1 −Kckh
2) + φS(h)

µ (S)

)n

for some ck depending only on the dimension k of S and a function φS such that
φS(h)
hk+2 → 0 as h ↓ 0.
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Proof.

P
({

x /∈ Ωh
Pn

∩ S
})

= P

({
n⋂

i=1

{x /∈ B(pi, h) ∩ S}
})

(9)

= P

({
n⋂

i=1

{pi /∈ B(x, h) ∩ S}
})

(10)

=
n∏

i=1

P ({pi /∈ B(x, h) ∩ S})(11)

=
n∏

i=1

(1 − P ({pi ∈ B(x, h) ∩ S})) .(12)

Since BS(x, h) ⊆ B(x, h)∩S,18 then µ (S ∩B(x, h)) ≥ µ (BS(x, h)). On the other
hand, note that

P ({pi ∈ B(x, h) ∩ S}) =
µ (S ∩B(x, h))

µ (S)

≥ µ (BS(x, h))

µ (S)
.

Finally, as shown in Appendix D, one can lower bound µ (BS(x, h)) using infor-
mation on the curvatures of S, by means of the Bishop–Günther volume comparison
theorem. More precisely, we can write

µ (BS(x, h)) ≥ min
ζ∈S

µ (BS(ζ, h)) ≥ ωkh
k + θS(h),

where θS(h)
hq → 0 when h → 0 for q ≤ k + 1. Therefore, from (9) we obtain

P
({

x /∈ Ωh
Pn

∩ S
})

≤
(

1 − ωk h
k + θS(h)

µ (S)

)n

.

The last assertion follows from Proposition 3.
Remark 5. Note that we cannot, however, from (8), conclude that P(S � Ωh

Pn
) ≤(

1 − ωk hk+θS(h)
µ(S)

)n
. In order to upper bound P(S � Ωh

Pn
) we will first estimate

P(BS(x, δ) � Ωh
Pn

) for any x ∈ S and small δ > 0. Then we will use the compactness
of S by covering it with a finite δ-net consisting of N(S, δ) points, and conclude by
using the union bound. Yet another intermediate step will therefore be to estimate
the covering number N(S, δ).

Lemma 2. Under the hypotheses of the previous lemma, let δ ∈ (0, h); then

P
(
BS(x, δ) � Ωh

Pn

)
≤
(

1 − ωk (h− δ)k + θS(h− δ)

µ (S)

)n

.(13)

Proof. We find α and β such that {BS(q, δ) ⊆ Ωh
Pn

} ⊇ {q ∈ Ωαh+βδ
Pn

}. Note first

that for any x ∈ BS(q, δ), |x−q| ≤ dS(x, q) ≤ δ. Assume that the event {q ∈ Ωαh+βδ
Pn

}

18Consider z ∈ BS(x, h); then dS(x, z) ≤ h, but always d(x, z) ≤ dS(x, z), and thus d(x, z) ≤ h,
which implies z ∈ B(x, h) ∩ S.
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holds. Then for some pr ∈ Pn, q ∈ B(pr, αh + βδ); that is, |q − pr| ≤ αh + βδ. Now,
note that

|x− pr| ≤ |x− q| + |q − pr| ≤ αh + (β + 1)δ.

If we force the rightmost number to be h, we find that we must have (1+β)δ = (1−α)h,
and then αh+βδ = h−δ. Then we have found BS(q, δ) ⊆ B(pr, h−δ) ⊂ Ωh

Pn
. Hence

(using (8)), P(BS(q, δ) ⊆ Ωh
Pn

) ≥ P(q ∈ Ωh−δ
Pn

≥ 1 − (1 − ωk (h−δ)k+θS(h−δ)
µ(S) )n.

We also need the next lemma, whose proof is deferred to Appendix C.
Lemma 3 (bounding the covering number). Under the hypotheses of Lemma 2

and further assuming S to be compact, we have that for any small enough δ > 0 there
exists a δ-covering of S with cardinality

N(S, δ) ≤ µ (S)

ωk(δ/2)k + θS(δ/2)
.(14)

Proposition 2. Let the set of hypotheses sustaining all of the previous lemmas

hold. Let also ([0, 1) �)xh
�
= ωk(h/2)k+θS(h/2)

µ(S) , where ωk and θS are given as in the

proof of Lemma 1. Then

P
(
S � Ωh

Pn

)
≤ e−nxh

xh
.(15)

Proof. Consider a finite h
2 -net covering S given by Lemma 3, that is, S =⋃N(S,h2 )

i=1 BS(qi,
h
2 ); then

P
(
S � Ωh

Pn

)
= P

(⋃
x∈S

{x /∈ Ωh
Pn

}
)

= P

⎛⎝N(S,h2 )⋃
i=1

⋃
x∈BS(qi,

h
2 )

{x /∈ Ωh
Pn

}

⎞⎠
≤ N

(
S,

h

2

)
max

1≤i≤N(S,h2 )
P

⎛⎝ ⋃
x∈BS(qi,

h
2 )

{x /∈ Ωh
Pn

}

⎞⎠
= N

(
S,

h

2

)
max

1≤i≤N(S,h2 )
P

(
BS

(
qi,

h

2

)
� Ωh

Pn

)

= N

(
S,

h

2

) (
1 − min

1≤i≤N(S,h2 )
P

(
BS

(
qi,

h

2

)
⊆ Ωh

Pn

))
.

Using the lemmas above, we obtain

P
(
S � Ωh

Pn

)
≤ (1 − xh)n

xh
,

and we conclude by using the inequality 1 − x ≤ e−x, valid for x ≥ 0.
It is both interesting and useful to find a relation between n (the number of points

in the cloud), h (the radii of the balls), and k (the dimension of the manifold) which
guarantees limn↑+∞, h↓0 P(S � Ωh

Pn
) = 0. For this purpose we will use Proposition 2.
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Note that h > 0 will be small, and also, if we are attempting to approximate dS, h
should tend to 0.19

Remark 6. Note that for {am}m∈N, am ↓ 0, e−mam

am
goes to zero as m ↑ ∞ if am is

asymptotically greater than or equal to logm
m . Then, in order to have the right-hand

side of (15) tend to zero, we should have xh � logn
n , and the condition relating h, k,

and n should then be20

hk �
(
µ(S)

2k

ωk

)
log n

n
.(16)

Also, under this condition we can estimate the rate at which e−nxh

xh
approaches zero

as n ↑ ∞. For example, with xh � logn
n , e−nxh

xh
� 1

logn as n ↑ ∞. Note that, of course,
we can speed up the convergence towards zero by choosing slower variations of xhn

with n; for instance, with xhn � lognγ

n , γ ≥ 1, we have e−nxh

xh
� 1

γ(log n)nγ−1 as n ↑ ∞.

Bounds for P(S � Ωh
Pn

) similar to ours can be found in [27]. It can be seen that our
bounds are better than the ones reported in [27] for a certain range of k, the dimension
of S. We should point out that with our bounds we can obtain rates of convergence
comparable to the optimal ones. Let us elaborate on this: In the case of the unit
circle S1 it is known (see [66]) that

p1(n, h)
�
= 2ne−n h

π � P
(
S1 � Ωh

Pn

)
(17)

for n large and h
π � 1, whereas our bound is p2(n, h)

�
= e−nh/2π

h/2π � P(S1 � Ωh
Pn

).

Choose for p1, h
(1)
n = γ1π

log n
n

and for p2, h
(2)
n = γ2π

log n
n

. Plugging these expressions

into the formulas for p1 and p2, we find p1 = 2n1−γ1 and p2 = 2
γ2(log n)n

1− γ2
2 . Hence,

by letting (2 >)γ2 = 2γ1 (which is equivalent to
h(2)
n

h
(1)
n

= 2), we obtain p2 � p1.

The optimal bound (17) for the case of S1 is derived using direct knowledge of the
distribution of the minimal number of random arcs (of a certain fixed size) needed to
cover S1 completely. This distribution is unknown for all nontrivial cases [66, 34]. In

the case of the sphere S2, also in [66], a bound of the type P(S2 � Ωh
Pn

≤ CN2e−DNh2

)
is reported (for certain constants C and D); however, the proof seems to use properties
of symmetry of the sphere in a fundamental way. Other interesting bounds which
could be used in this situation are those in [38].

We should finally point out that the problem of covering a certain domain (usually
S1) with balls centered at random points sampled from this domain has been studied
by many authors [66, 27, 28, 37, 65, 39, 34] and even by Shannon in [64].

We have the following interesting corollary, whose proof can be found in Appendix
C.

Corollary 4. Let S be a smooth compact submanifold of Rd without boundary.
We have that if (16) holds, then for any ε > 0

lim
h,n

P
(
dH(S,Ωh

Pn
) > ε

)
= 0,

where dH is the Hausdorff distance between sets.

19For constant h > 0, by definition 0 < xh < 1, and then obviously e−nxh

xh
→ 0 as n ↑ ∞.

20This kind of condition is commonplace in the literature of random coverings; see, e.g., [25, 65, 22].
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We are now ready to state and prove the following convergence theorem.
Theorem 7. Let S be a k-dimensional smooth compact submanifold of Rd. Let

Pn = {p1, . . . , pn} ⊆ S be such that pi ∼ U[S] for 1 ≤ i ≤ n. Then if h = hn is such
that hn ↓ 0 and (16) holds as n ↑ ∞, we have that for any ε > 0,

P

(
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)
n↑∞−→ 0.

Proof. We base our proof on (7). We first note that P (Eε | Ih,n) = 0 for n large
enough because, from considerations at the beginning of section 4, maxp,q∈S(dS(p, q)−
dΩhn

Pn

(p, q)) ≤ CS

√
hn whenever S ⊆ ΩPhn

n
holds. Let N = N(ε) ∈ N be such that

hn < ( ε
CS

)2 for all n ≥ N(ε). Then, for n ≥ N(ε), P (Eε) = P
(
Ich,n ≤ e

−nxhn

xhn

)
, and

since by assumption (16) holds, the right-hand side goes to 0 as n ↑ ∞.
Remark 7.

1. As can be gathered from the preceding proof, for fixed ε > 0 and large n ∈ N,

P

(
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)
can be upper bounded by e

−nxhn

xhn
. For example, setting xhn = γ logn

n for γ ≥ 1 yields

(given n big enough)

P

(
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)
≤ 1

γ nγ−1 log n
.

2. Then we see that by requiring
∑

n≥1
e
−nxhn

xhn
< ∞ and using the Borel–

Cantelli lemma, we obtain almost sure convergence, namely,

P

(
lim
n↑∞

max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
= 0

)
= 1.

This can be guaranteed (for example) by setting xhn
= γ logn

n for γ > 2.
This concludes our study of distance functions on (noiseless) point clouds (sam-

pled manifolds). We now turn to the even more realistic scenario where the points
are considered to be noisy samples.

6. Noisy sampling of manifolds. We assume that we have some uncertainty
on the actual position of the surface, and we model this as if each point in the set of
sampled points is modified by a (not yet random) perturbation of magnitude smaller
than ∆. More explicitly, each pi is given as pi = p+ζ×v for some v ∈ Sd−1, some p in
S, and ∆ ≥ ζ ≥ 0. Then we can guarantee that the point p from which pi comes can be
found inside B(pi,∆)∩S. We are again interested in comparing dΩh

Pn
: Ωh

Pn
→ R+∪{0}

with dS : S → R+ ∪{0}, but now these functions have different domains; therefore we
must be careful in defining a meaningful way of relating them. If we consider

F∆
S

�
= {f | f : Ω∆

S → S, f(p) ∈ B(p,∆) ∩ S},

we can compare, for some f ∈ F∆
S and 1 ≤ i, j ≤ n, dΩh

Pn
(pi, pj) with dS(f(pi), f(pj)).

Note that as the perturbation’s magnitude goes to zero, F∆
S � f(p)

∆↓0−→ p, for p ∈ Ω∆
S .

The next step is to write max1≤i,j≤n ‖dhΩPn
(pi, pj) − dS(f(pi), f(pj))‖, the biggest
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error we have for our set of points. And finally, the next logical step is to look at the
worst possible choice for f :

LS(Pn; ∆, h)
�
= sup

f∈F∆
S

max
1≤i,j≤n

∣∣∣dS(f(pi), f(pj)) − dΩh
Pn

(pi, pj)
∣∣∣ .(18)

We start by presenting deterministic bounds for the expression in (18), and only
later will we be more (randomly) greedy and, in the spirit of Theorem 7, prove for
ε > 0 a result of the form (LS(Pn; ∆, h) will be a R.V.)

P (LS(Pn; ∆, h) > ε)
n↑∞−→ 0.

6.1. Deterministic setting. The idea is to prove that for some convenient
function f̂ ∈ F∆

S we can write

LS(Pn; ∆, h) ≤ max
1≤i,j≤n

∣∣∣dS(f̂(pi), f̂(pj)) − dΩh
Pn

(pi, pj)
∣∣∣+ λ(h,∆),

where 0 ≤ λ(x, y)
x,y↓0−→ 0. The natural candidate for f̂ is the orthogonal projection

onto S, ΠS : ΩH
S → S, whose properties are discussed in Appendix B. Then we see

that we can reduce everything to bounding maxp,q∈S ‖dS(p, q) − dΩh
Pn

(p, q)‖. This is

simple since if Pn ⊂ Ω∆
S , then Ωh

Pn
⊂ Ωh+∆

S , and dS ≥ dΩh
Pn

|S
≥ dΩh+∆

S |S
, and finally

from Theorem 5, ‖dS − dΩh
Pn

‖L∞(S) ≤ CS

√
h + ∆.

Let S ⊂ Ωh
Pn

, f ∈ F∆
S , and 1 ≤ i, j ≤ n. Then, after using the triangle inequality

a number of times, we can write the bound∣∣∣dS(f(pi), f(pj)) − dΩh
Pn

(pi, pj)
∣∣∣ ≤ 2 sup

f∈F∆
S

max
p∈Pn

dS(f(p),ΠS(p))

+ max
p,q∈S

∣∣∣dS(p, q) − dΩh
Pn

(p, q)
∣∣∣

+ max
p,q∈Pn

∣∣∣dΩh
Pn

(p, q) − dΩh
Pn

(ΠS(p),ΠS(q))
∣∣∣ .

The last term can be bounded by 2∆, the one in the middle has already been
discussed, and hence we are left with the first one. Using Corollary 2, we find that
since f(p) ∈ B(ΠS(p), 2∆) ∩ S, then in fact f(p) ∈ BS(ΠS(p), 2∆(1 + CS

√
∆)) and

dS(f(p),ΠS(p)) ≤ 2∆(1+CS

√
2
√

∆). Summing up, under the condition S ⊂ Ωh
Pn

, we
obtain the desired result,

LS(Pn; ∆, h) ≤ CS

√
h + ∆ + 2∆(2 +

√
2CS

√
∆).(19)

6.2. Random setting. Assume that {p1, . . . , pn} is a set of i.i.d. random points
such that each pi ∼ U[Ω∆

S ]. At this time, we want to estimate the probability of having
S ⊆ Ωh

Pn
. It is easy to see that as a first “reality compliant” condition one should

have that the noise level not be too big with respect to h. We will impose h ≥ ∆ for
simplicity’s sake, as can be understood from the convergence theorem below. Since
the techniques are similar to those used in the noise-free case, we will present its proof
in Appendix C.

Theorem 8. Let S be a k-dimensional smooth compact submanifold of Rd. Let
Pn = {p1, . . . , pn} be such that pi ∼ U[Ω∆

S ] for 1 ≤ i ≤ n . Then if h = hn, ∆ = ∆n
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Fig. 1. Intrinsic distance function for a point cloud. A point is selected in the head of the
David, and the intrinsic distance is computed following the framework introduced here. The point
cloud is colored according to the intrinsic distance to the selected point, going from bright red (far)
to dark blue (close). The offset band, given by the union of balls, is shown next to the distance
figure. Bottom: Same as before, with a geodesic curve between two selected points.

are such that ∆n ≤ hn and hn ↓ 0 and ∆k
n � logn

n as n ↑ ∞, we have that for any
ε > 0,

P (LS(Pn; ∆, h) > ε)
n↑∞−→ 0.

We have now concluded the analysis of the most general case for noisy sampling
of manifolds. Note that, although the results in this and in previous sections were
presented for Euclidean balls, they can easily be extended to more general covering
shapes (check Corollary 1 above), e.g., following [15, 36], or using minimal spanning
trees, or from the local directions of the data [56]. In addition, the recently developed
approach reported in [57] can be used for defining the offset band in an adaptive
fashion. This will improve the bounds reported here. Similarly, the results can be
extended to other sampling or noise models following the same techniques developed
here.

7. Implementation details and examples. We now present examples of dis-
tance matrices and geodesics for point clouds (Figure 1), use these computations to
find intrinsic Voronoi diagrams (Figure 2; see also [42, 43, 71]); and compare the re-
sults with those obtained with mesh-based techniques (Figure 3).21 We also present
examples in high dimensions and use, following and extending [24], our results to
compare manifolds given by point clouds. All these exercises are to exemplify the
importance of computing distance functions and geodesics on point clouds, and are
by no means exhaustive. The 3D data sets used come from real point cloud data
and have been obtained either from range scanners (David model) or via photometric
stereo techniques (man and woman).

21All the figures in this paper are in color. VRML files corresponding to these examples can be
found at http://mountains.ece.umn.edu/∼guille/pc.htm.
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Fig. 2. Voronoi diagram for point clouds. Four points (left) and two points (right) are selected
on the cloud, and the point cloud is divided (colored) according to the geodesic distance to these
four points. Note that this is a surface Voronoi, based on geodesics computed with our proposed
framework, not a Euclidean one.

The theoretical results presented in the previous sections show that the intrinsic
distance and geodesics can be approximated by the Euclidean ones computed in the
band defined (for example) by the union of balls centered at the points of the cloud.
The problem is then simplified to first computing this band (no need for mesh com-
putation, of course), and then using well-known computationally optimal techniques
to compute the distances and geodesics inside this band, exactly as done in [49] for
implicit surfaces (where the interested reader can also find explicit computational
timings and accuracy comparisons with mesh-based approaches). The band itself can
be computed in several ways, and for the examples below we have used constant radii.
Locally adaptive radii can be used, based, for example, on diameters obtained from
minimal spanning trees or on the recent work reported in [57]. Automatic and local
estimation of h defining Ωh

Pn
, which will improve the bounds reported here, was not

pursued in this paper and is the subject of current implementation efforts.

The software implementation of the algorithm is based on using the fast Euclidean
distance computation algorithms, usually referred to as fast marching algorithms [35,
62, 63, 69], twice. We omit the description of this algorithm since it is well known.
The starting point is defining a grid over which all the computations are performed.
This amounts to choosing ∆xi , the grid spacing in each direction i = 1, . . . , d, which
will determine the accuracy of the numerical implementation (the offset band includes
fewer than 10 grid points).22 In the first round we compute the band Ωh

Pn
= {x ∈

Rd : d(Pn, x) ≤ h} by specifying a value of zero for the function Ψ(x) = d(Pn, x) on
the points x ∈ Pn. Since in general these points will not be on the grid, we use a
simple multilinear interpolation procedure to specify the values on neighboring grid
points. The second use of the fast distance algorithm is also simply reduced to using
Ψ to define Ωh

Pn
by using the simple modification reported in [49]. The computation

of geodesics was done using a simple Runge–Kutta gradient descent procedure, much
in the way described in [49], with some obvious modifications.

22Adaptive grids inside the fixed or variable width offset band could be used as well; see, for
example, [30].
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Fig. 3. Examples of geodesic computations. This data is used to study the algorithm robustness
to noise, see Appendix A.

All the code and 3D visualization was developed in C++ using both Flujos (which
is written using Blitz++; see [7]) and VTK (see [70]). For matrix manipulation and
visualization of other results we used MATLAB. We are currently working on a more
advanced implementation of the proposed framework that permits us to work with
high-dimensional data without having the memory allocation problems that result
from blind and straightforward allocation of resources to empty and nonused grids.

7.1. High-dimensional data. In this section we present a simple example for
high-dimensional data. We embed a circle of radius 15 in R5, and use a grid of size
34×4×4×4×34 (with uniform spacing ∆x = 1) such that each of the sample points
is of the form pi = 15 (cos( 2πi

N ), 0, 0, 0, sin( 2πi
N )) + (17, 2, 2, 2, 17), for 1 ≤ i ≤ N .

We then use our approach to compute the (approximate) distance function dh in a
band in R5, and then the error eij = |dS(pi, pj) − dh(pi, pj)| for i, j ∈ {1, . . . , N}.
In our experiments we used h = 2.5 > ∆x

√
5.23 We randomly sampled 500 points

from the N = 1000 points used to construct the union of balls to build the 500× 500
error matrix ((eij)). We found maxij{eij} = 2.0275, that is, a 4.3% L∞-error. In
Figure 4 we show the histogram of all the (5002) entries of ((eij)). We should also
note that when following the dimensionality reduction approach in [67], with the
geodesic distance computation proposed here, the correct dimensionality of the circle
was obtained.

23For a discussion on how to make a preliminary estimation of the value of h, see [49].
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Fig. 4. Histogram for the error in the case of a circle embedded in R5.

In high dimensions, when the grid is too large, our current numerical implemen-
tation becomes unusable. The problem stems from the fact that we require too much
memory space, most of which is not really used, since the computations are con-
ducted only in a band around P ⊂ Rd. To be more precise, the memory requirements
of our current direct implementation, which uses a d-dimensional array to make the
computations, are � (maxi li)

d, whereas we really need a storage capacity of order
µk(S)hd−k, where li is the size of P’s bounding box along the ith direction, 1 ≤ i ≤ d,
and µk(S) is the measure of the k-dimensional manifold S (embedded in Rd). This
memory problem is to be addressed by a computation that is not based on discretizing
the whole band. (Note, of course, that the theoretical foundations presented in this
paper are independent of the particular implementation.) We are currently working
on addressing this specific issue.

7.2. Object recognition. The goal of this application is to use our framework
to compare manifolds given by point clouds. The comparison is done in an intrinsic
way, that is, isometrically (bending) invariant. This application is motivated by [24],
where they use geodesic distances (computed using a graph-based approach) to com-
pare 3D triangulated surfaces. In contrast with [24], we compare point clouds using
our framework (which is not only based in the original raw data, but also, as shown
in Appendix A, more robust to noise than mesh approaches such as those of [24] and
is valid in any dimensions), and use a different procedure/similarity metric between
the manifolds. The authors in [24] basically project into low-dimensional manifolds
and use eigenvalues and eigenvectors of a centralized matrix related to the distance
matrices (matrices which in each entry (i, j) have the value of the intrinsic distance
between (projected) points pi and pj of the cloud), which are clearly not sufficient to
distinguish nonisometric objects. (Nonisometric objects can have distance matrices
with the same eigenvalues.) A different study, based on direct comparisons of distance
matrices, is used here and detailed in Appendix E.



GEODESIC DISTANCE ON POINT CLOUDS 1247

Table 1

Information about the models used in our recognition experiments.

Dataset Number of points in the cloud (n) Grid size used

Bunny 15862 80 × 80 × 70
MAN2 26186 120 × 90 × 200
MAN3 26186 120 × 90 × 165
MAN5 26186 120 × 85 × 160

WOMAN2 29624 120 × 105 × 175
WOMAN3 29624 120 × 100 × 180

Our task then is to compare two manifolds in an intrinsic way; i.e., we want
to check whether they are isometric or not. We want to check this condition by
using point clouds representing each one of the manifolds. Let S1 and S2 be two

submanifolds of Rd and sample on each of them the two point clouds P
(1)
n ⊂ S1

and P
(2)
n ⊂ S2. Then, following our theory, we compute the corresponding distances

in the offset bands for these two sets of points, d
Ω

h1

P
(1)
n

and d
Ω

h2

P
(2)
n

, and for point

subsets {q(1)
1 , . . . , q

(1)
m } = Q

(1)
m ⊆ P

(1)
n , {q(2)

1 , . . . , q
(2)
m } = Q

(2)
m ⊆ P

(2)
n we compute the

corresponding m×m pairwise distance matrices (as defined above)

D1 =

((
d
Ω

h1

P
(1)
n

(q
(1)
i , q

(1)
j )

))
and D2 =

((
d
Ω

h2

P
(2)
n

(q
(2)
i , q

(2)
j )

))
.

Let PMm be the set of m×m permutation matrices and ‖·‖ a unitary transformation

invariant norm24 (fix the Frobenius norm: ‖A‖ =
√∑

i

∑
j a

2
ij). Then we define the

I-distance between (distance) matrices D1 and D2 as

dI(D1, D2)
�
= min

P∈PMm

‖D1 − PD2P
T ‖.

Clearly, if dI(D1, D2) = 0, then we have an isometry between the discrete metric sets

(Q
(1)
n , d

Ω
h1

P
(1)
n

) and (Q
(2)
n , d

Ω
h2

P
(2)
n

). This should allow us to establish a rough isometry

(see [14, section 4.4]) between S1 and S2 with interesting constants.
The exact details on how this metric is approximated and how the subsets of

points Q are selected is presented in Appendix E. For the experiments regarding
recognition of shapes we used the datasets listed in Table 1.

In Figure 5 we present the histogram of the error e(100)/100 for 20 different
100 × 100 distance matrices corresponding to the full Bunny model, with the 100
points chosen as in the “packing procedure” described in Appendix E, where the
exact definition of e(·) is also given (see (28)). We computed the mean of e(100)/100
over the 19 × 18 × · · · × 1 = 190 comparison experiments to be 0.4774 with standard
deviation 0.0189. This can be interpreted as indicating that when one considers a large
enough set of points, the information contained in the packing set is representative
of the metric information of the manifold, independently of the particular choice of
the packing set. This claim needs some further theoretical justification, which could
come if a result of the following fashion were proved:25

24‖AU‖ = ‖A‖ for any matrix A and any unitary matrix U .
25Note added in proof: After this paper was submitted for publication, we proved that a properly

modified version of the above claim holds in probability; see [50] for details.
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Fig. 5. Histogram showing the errors for different selections of point clouds on the bunny model.

Let S be a smooth compact k-dimensional submanifold of Rk such
that its Ricci curvature is bounded below by κ(n− 1) with κ ≤ 0. Let

Q
(r)
m ⊂ S, r = 1, 2, be such that dS(q

(r)
i , q

(r)
j ) ≥ ε and BS(Q

(r)
m , R)

covers S for some R > ε > 0. Then, with D1 and D2 defined as
before,

dI(D1, D2) ≤ 2mCS

√
h + C(R, ε,m),

where the exact form of C(R, ε,m) is to be determined, leading to an
optimal choice of m (the size of the subset).

Using the same procedure, described in Appendix E, to choose the sets Q
(i)
m , we

computed the errors (according to e(D1, D2)) for five artificial human models; three
of them are bendings of a man and two are bendings of a woman; see Figures 6 and 7.
Details on these models are also given in Table 1. The results of this cross-comparison
are presented in Table 2 below.

Table 2

Cross-comparisons for the human models using the error measure e(300)/300 normalized by the
maximum of the errors.

MODEL Man2 Man3 Man5 Woman2 Woman3

Man2 ∗ 0.0514 0.0570 0.4690 0.4853
Man3 ∗ ∗ 0.0206 0.4701 0.4859
Man5 ∗ ∗ ∗ 0.4702 0.4862

Woman2 ∗ ∗ ∗ ∗ 0.2639
Woman3 ∗ ∗ ∗ ∗ ∗

These examples show how our geodesic distance computation technique, when
complemented with the matrix metric in Appendix E, can be used to compare man-
ifolds given by point clouds, in a bending-invariant fashion and without explicit
manifold reconstruction. More exhaustive experimentation and additional theoretical
justification will be reported elsewhere.
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Fig. 6. MAN models. From top to bottom (two views of each model): MAN2, MAN3, and MAN5.

Fig. 7. WOMAN models. From left to right (two views of each model): WOMAN2 and
WOMAN3.

Before concluding, we should comment that, as frequently done in the litera-
ture, we could normalize the geodesic distances if scale invariance were also required.
Moreover, we could also consider in the distance matrix only nonzero entries for
local neighborhoods. In addition, the use of techniques for computing eigenvalues
and eigenvectors such as those in the work of Coifman and colleagues [17], on high-
dimensional geometric multiscale analysis should be explored.

8. Concluding remarks. In this paper, we have extended our previous work
[49] to deal with (smooth) submanifolds of Rd (of any codimension) and possibly with
boundary, and using these extensions, we have also shown how to compute intrinsic
distance functions on a generic manifold defined by a point cloud, without the in-
termediate step of manifold reconstruction. The basic idea is to use well-developed
computational algorithms for computing Euclidean distances in an offset band sur-
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rounding the manifold, to approximate the intrinsic distance. The underlying theo-
retical results were complemented by experimental illustrations.

As mentioned in the introduction, an alternative technique for computing geodesic
distances was introduced in [9, 67] (see also [31]). In contrast with our work, the effects
of noise were not addressed in [9, 31]. Moreover, as one can see from considerations in
Appendix A, our framework seems to be more robust to noise. We should note that
the memory requirements of the current way of implementing our framework are large,
and this needs to be addressed for very high dimensions (the framework is, of course,
still valid). In particular, we are interested in direct ways of computing distances
inside regions defined by union of balls, without the need to use the Hamilton–Jacobi
approach. Several classical computer science implementation tricks can be applied to
avoid this memory allocation problem, and this is part of our current implementation
efforts.

We are currently working on the use of this framework to create multiresolution
representations of point clouds (in collaboration with C. Moenning and N. Dyn; see
[55] and also [11, 18, 20, 58]), to further perform object recognition for larger libraries,
and to compute basic geometric characteristics of the underlying manifold—all this,
of course, without reconstructing the manifold. (See [54] for recent results on normal
computations for 2D and 3D noisy point clouds.) Some results in these directions are
reported in [50, 55]. Further applications of our framework for high-dimensional data
are also currently being addressed, beyond the preliminary (toy) results reported in
section 7. Of particular interest in this direction is the combination of this work with
the one developed by Coifman and colleagues and the recent one in [31].

Appendix A. Comparison with mesh-based strategies for distance cal-
culation in the presence of noise. We now make some very basic comparisons
between our approach to geodesic distance computations and those based on graph
approximations to the manifold, such as the one in Isomap [67, 31].26 (Comparisons
of the band framework with the one reported in [40] for 3D triangulated surfaces are
reported in [49].) The goal is to show that such graph-based techniques are more sen-
sitive to noise in the point cloud sample (and the error can even increase to infinity
with the increase in the number of points). This is expected, since the geodesic in
such techniques goes through the noisy samples, while in our approach, they just go
through the union of balls. We make our argument only for the 1D case, while the
high-dimensional cases can be similarly studied.

A.1. 1D theoretical case. Let us consider a rectilinear segment of length L
and n + 1 equispaced points p1, . . . , pn+1 in that segment. Consider the noisy points
qi = pi + ζin, where n is the normal to the segment and ζi 1 ≤ i ≤ n are independent
R.V. uniformly distributed in [−∆,∆]. Let l = L/n denote the distance between
adjacent pi’s. Let d∆

g denote the length of the polygonal path q1q2 . . . qn+1 and d0 = L.

Then obviously d∆
g ≥ d0 for any realization of the R.V.’s ζi. Let di = ‖pi − pi+1‖;

then by Pythagoras theorem di =
√

l2 + z2
i , where zi = ζi − ζi+1 are R.V.’s with

triangular density in [−2∆, 2∆].

Next we compute E (di) = 1
2∆

∫ 2∆

−2∆

√
l2 + z2(1 − |z|

2∆ ) dz. The result is

E (di) =
√
l2 + 4∆2 +

l2

2∆
log

(
2∆ +

√
l2 + 4∆2

l

)
− 1

6∆2

(
(l2 + 4∆2)3/2 − l3

)
.

26Isomap builds a mesh by locally connecting the (noisy) samples.
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Table 3

Results of simulations with the Swiss Roll dataset.

Noise power (n2
k) maxij |Dg,nk

ij −Dg,0
ij | k maxij |Dh,nk

ij −Dh,0
ij | h

0.0001 2.5222 7 0.5266 1.8
0.01 4.6409 7 0.9430 1.8
0.04 5.1737 7 1.2489 1.8
0.09 5.3292 7 1.4682 1.8
0.16 5.4651 7 1.7965 1.8

Now assuming ∆
l � 1, we find that up to first order E (di) � l + ∆ and

E
(
d∆
g − d0

)
� n∆.

From this we also get27

pg
�
= P
(
d∆
g − d0 > ε

)
� n∆

ε
.

On the other hand, for our approximation d∆
h , if the segment is contained in

the union of the balls centered at the sampling points, d∆
h = d0. The probability of

covering the segment by the band can be made arbitrarily close to 1 by increasing n.
More precisely, one can prove that if p stands for the value of the probability of not
covering the segment, then p ≤ k L

∆ (1 − k′ ∆L )n, for some positive constants k and k′.
Then we can write

ph
�
= P
(
d∆
h − d0 > ε

)
≤ k′′

ε

L

∆

(
1 − k′

∆

L

)n+1

.

The comparison is now easy. We see that in order to have pg vanish as n ↑ ∞, ∆

must go to zero faster than 1
n . However, we know that by requiring ∆ � log n

n � 1
n

we have ph ↓ 0 as n ↑ ∞. This means that the graph approximation of the distance
is more sensitive to noise than ours.28 This gives some evidence about why our
approach is more robust than popular mesh-based ones. Next we present results of
some simulations carried out in order to further verify our claim.

A.2. Simulations. In Table 3 we present results of simulations carried out for
the SwissRoll dataset [67]; see Figure 3. We used 10, 000 points to define the man-
ifold. We then generated 10, 000 noise vectors, each component being uniform with
power one and zero mean. Then we generated noisy datasets from the noiseless Swis-
sRoll dataset by adding the noise vector times a constant nk to each vector of the
noiseless initial dataset. We then chose 1000 corresponding points in each dataset
and computed the intrinsic pairwise distance approximation, obtaining the matrices
{(Dg,nk

ij )} and {(Dh,nk

ij )} for the graph-based and our approach, respectively, where
k = 1, 2, . . . , 5, i, j ∈ [1, 1000], and nk denotes the noise level. We then computed the

values of maxij |Dg,nk

ij − Dg,0
ij | and maxij |Dh,nk

ij − Dh,0
ij | for each k, where Dg,0

ij and

Dh,0
ij stand for noiseless intrinsic distance approximations. In Table 3, h indicates the

radii and k the size of the neighborhood for Isomap. The graph approximation shows

27Also, with similar arguments we can prove that maxζ1,...,ζn+1

(
d∆
g − d0

)
� 2n2∆2

L
.

28Another way of seeing this is by noting that, for a fixed noise level ∆, by increasing n we actually
worsen the graph approximation, whereas we are making our approximation better.
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less robustness to noise than our method, as was argued above. This is also true for
the sensitivity,29 where our approach outperforms the graph-based one by at least
one order of magnitude. Note that the sensitivity for our approach can be formally
studied from Theorem 3.

Appendix B. Properties of Euclidean distance functions. The references
for this section are [2, pp. 12–16], and [26].

Theorem 9 (see [2]). Let Γ ⊂ Rd be a compact, smooth manifold without bound-

ary. Then η(x)
�
= 1

2d
2(Γ, x) is smooth in a tubular neighborhood U of Γ. Also, in U

it satisfies ‖Dη‖2 = 2η.
Corollary 5. The projection operator Π : U → Γ, for a given x ∈ U , can be

written as Π(x) = x−Dη(x). Moreover, this operator is smooth.
Remark 8. Differentiation of the relation 〈Dη,Dη〉 = 2η gives us D2ηDη = Dη.

Differentiating once more, we also find D3ηDη = D2η.
Theorem 10 (see [2]). Let Γ and U be as in Theorem 9, and let y ∈ U and

x = y − Dη(x) ∈ Γ, k = dim(Γ). Then, denoting by λ1, . . . , λn the eigenvalues of
D2η(y),

λi(y) =

{
d(Γ,y)κi(x)

1+d(Γ,y)κi(x) if 1 ≤ i ≤ k,

1 if k < i ≤ n,

where κi(x) are the principal curvatures of Γ at x along Dd(Γ, y) ∈ NxΓ, where NxΓ
is the normal space to Γ at x.

Appendix C. Deferred proofs.
Proof of Corollary 3. We present only a sketch of the proof. Let M be an extension

of S such that S is still strongly convex in M, and let 0 < δ
�
= minx∈S minz∈M ‖x−z‖.

Then, B(x, α)∩B(z, β) = ∅ for all x ∈ S, z ∈ ∂M, and α, β < δ
3 . Hence, Ωα

S∩Ωβ
∂M = ∅

for α, β ≤ δ
3 .

For any x, y ∈ S consider γh the Ωh
M-minimizing geodesic, L (γh) = dΩh

M
(x, y).

By the convexity of S there exists a unique M-minimizing geodesic γ0 ⊂ S joining
x, y, and then, by Theorem 4, γh uniformly converges to γ0. In particular, for any
ε > 0 there exists hε > 0 such that γh ⊂ Ωε

γ0
for all h < hε. Choose ε ≤ δ

3 ; then

γh ⊂ Ωε
γ0

⊂ Ωε
S. Furthermore, if h ≤ δ

3 , then Ωε
γ0

∩ Ωh
M = ∅, and therefore γh does

not touch ∂Ωh
M ∩ ∂Ωh

∂M. Thus, γh is C1,1 for h ≤ δ
3 . Note that with this choice of h

we have Ωh
S∩M ⊂ int(M), and therefore we also have a smooth orthogonal projection

operator Π : Ωh
S → M.

Proceeding as in the first steps of the proof of Theorem 5, we have L (γh) =
dΩh

M
(x, y) ≤ dM(x, y) ≤ L (Π(γh)), since Π(γh) ⊂ M but may not be a minimizing

path. Then, using the convexity of S in M, dM(x, y) = dS(x, y), and therefore 0 ≤
dS(x, y)− dΩh

M
(x, y) ≤ |L (Πγh)−L (γh) |, which can be bounded by a constant times√

h just mimicking the proof of Theorem 5. We conclude by noting that Ωh
S ⊂ Ωh

M,
and hence dS(x, y) − dΩh

M
(x, y) ≥ dS(x, y) − dΩh

S
(x, y).

Proof of Lemma 3. We now estimate the covering number N(S, δ). The idea is
constructive, very simple, and of course standard. We consider the following procedure
(adopted from [9]): Let q1 be any point in S, and choose q2 ∈ S\BS(q1, δ). Then choose
q3 ∈ S\{BS(q1, δ) ∪ BS(q2, δ)}. Iterate this procedure until it is no longer possible

29Sensitivity is defined as
∣∣∣1 − distance for noisy points

distance for clean points

∣∣∣.
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to choose any point q ∈ S\{∪N(S,δ)
k=1 BS(qk, δ)}; in such a case S = ∪N(S,δ)

k=1 BS(qk, δ).
Note that BS(qk,

δ
2 ) ∩ BS(ql,

δ
2 ) = ∅ if k �= l, and therefore we can bound N(S, δ) ≤

µ(S)
minx∈S µ(BS(x,δ/2)) . Therefore, using the Bishop–Günther inequalities in the same

manner as in Lemma 1, we find (14).
Proof of Corollary 4. Note first that the random variable dH(S,Ωh

Pn
) is bounded

by max{diam (S) + h, h}. By definition of the Haussdorf distance, dH(S,Ωh
Pn

) =

max (supx∈S d(x,Ωh
P), supy∈Ωh

Pn
d(y, S)). Then, supx∈S d(x,Ωh

Pn
) ≤ diam (S) + h by

the triangle inequality, and supy∈Ωh
P
d(y, S) ≤ h, trivially.

Now, we can write E(dH(S,Ωh
Pn

)) = E(E(dH(S,Ωh
P)‖�[S⊆Ωh

P])), but the inner

expected value can be bounded by h when �[S⊆Ωh
Pn ] = 1, and by max{diam (S)+h, h}

when �[S⊆Ωh
P] = 0. Using Chebyshev’s inequality, we find

P
(
dH(S,Ωh

Pn
) > δ

)
≤ h

δ
P
(
{S ⊆ Ωh

P}
)

+
max{diam (S) + h, h}

δ

(
1 − P

(
{S ⊆ Ωh

P}
))

≤ h

δ
+

diam (S) + h

δ

(
1 − P

(
{S ⊆ Ωh

P}
))
,

a quantity that goes to zero for any fixed δ > 0 as h ↓ 0 and n ↑ ∞, provided that
(16) holds.

Proof of Theorem 8. Since the proof is almost identical to that of Theorem 7,
many steps will be skipped. Note that since S is compact, there exists an upper bound
K for all its sectional curvatures. This will allow us to use the volume comparison
theorems as before.

We can start from the adequate version of (7). We must bound both P({S ⊆ Ωh
Pn

}c)
and P(LS(Pn; ∆, h) > ε | {S ⊆ Ωh

Pn
}). The second term can be bounded in an identi-

cal way as its ∆ = 0 counterpart was, obtaining

P
(
LS(Pn; ∆, h) > ε | {S ⊆ Ωh

Pn
}
)
≤ CS

√
h + ∆ + 2∆(2 +

√
2CS

√
∆)

ε
,(20)

which vanishes as n ↑ ∞.
Now we upper bound P({S ⊆ Ωh

Pn
}c). Everything carries over in the same fashion

as in the proof of Lemma 1, except that now we must take into consideration that the
pi’s are not necessarily on S but inside Ω∆

S . Following the described steps, we obtain

P
({

x /∈ Ωh
Pn

∩ S
})

≤
(

1 −
µ
(
B(x, h) ∩ Ω∆

S

)
µ
(
Ω∆

S

) )n

.(21)

Notice that, since we are working with h ≥ ∆, we have B(x,∆) ⊂ B(x, h) ∩ Ω∆
S

(see Figure 8), and we can rewrite the bound in (21) as

P
({

x /∈ Ωh
Pn

∩ S
})

≤
(

1 − µ (B(x,∆))

µ
(
Ω∆

S

) )n

(22)

=

(
1 − µ (B(·,∆))

µ
(
Ω∆

S

) )n

.(23)

We can bound this quantity using formulas akin to Weyl’s tube theorem. More
precisely, as explained in Appendix D, we can write

µ
(
Ω∆

S

)
= µ (S) v(d− k,∆) + ϕS(∆),
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∆

h

x

S

Fig. 8. B(x,∆) ⊂ B(x, h) ∩ Ω∆
S .

where ϕS(∆)
∆d−k+1 → 0 as ∆ → 0 and v(D,R) is the volume of the ball of radius R in

D-dimensional Euclidean space.
Now, for x ∈ S we must find a bound for P(BS(x, δ) � Ωh

Pn
), but as in the proof

of Lemma 2, P(BS(x, δ) � Ωh
Pn

) ≤ P(x /∈ Ωh−δ
Pn

∩ S), which can be bounded by (22).
Also the bound (14) for the covering number still works in this case, and thus we can

write P(S � Ωh
Pn

∩ S) ≤ (1−y∆)n

xh
, where y∆

�
= µ(B(·,∆))

µ(Ω∆
S )

. Also since h ≥ ∆, xh ≥ x∆,

then

P
(
S � Ωh

Pn

)
≤ (1 − y∆)n

x∆
.

But with ∆ small enough, y∆ � α∆k and x∆ � β∆k, and then Lemma 4 and the
hypotheses guarantee that P({S ⊂ Ωh

Pn
}c) → 0 as n ↑ ∞.

Appendix D. Basic differential geometry facts. In this section we collect
some facts that were used throughout the article, following [32].

D.1. Measure of a d-dimensional ball. Recall the definition of the Γ func-
tion:

Γ(α) =

∫ +∞

0

e−ttα−1dt.

Theorem 11. The volume of d-dimensional ball of radius r is given by

v(d, r)
�
= µ (B(·, r)) = ωdr

d,

where ωd = 2πd/2

dΓ(d/2) .

D.2. Bishop–Günther inequalities for the measure of a geodesic ball.
Theorem 12. Let S be a complete k-dimensional Riemannian manifold, assume

r to be smaller than the distance between m ∈ S and Cut(m, S) (cut locus of the
points m in S). Let KS be the sectional curvatures of S and γ a constant. Then if

V̂γ(r)
�
= 2πk/2

Γ(k/2)

∫ r
0

( sin(t
√
γ)√

γ

)k−1
dt, then

KS ≥ γ implies µ (BS(m, r)) ≤ V̂γ(r),(24)

KS ≤ γ implies µ (BS(m, r)) ≥ V̂γ(r).(25)
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Proposition 3. We have the following Taylor expansion for V̂γ(r), the volume
of a geodesic ball in a space of constant sectional curvature γ:

V̂γ(r) = ωkr
k

(
1 − r2 γ

6

k(k − 1)

k + 2

)
+ φ(r),

where φ(r)
rk+2 −→ 0 as r ↓ 0.

D.3. Weyl’s tube theorem.

Theorem 13. Let S be a k-dimensional manifold topologically embedded in Rd.
Assume that S is compact closure, and that every point in the tube T (S, r) = {x ∈
Rd such that, d(S, x) ≤ r} has a unique shortest geodesic connecting it with S; then
the volume µ (T (S, r)) of the tube is given by

µ (T (S, r)) = r

√
π

Γ(3/2)

[ d−1
2 ]∑

i=0

k2i(S)r2i

I(i)
,(26)

where I(i) = 1 ·3 ·5 · · · · ·(2i+1) and the numbers k2i depend on the curvature structure
of S. For our purposes we need know only that k0 = µ (S).

Corollary 6. The volume of the tube T (S, r) can be expanded as

µ (T (S, r)) = µ (S) v(d− k; r) + φS(r),

where φS(r)
rd−k

r↓0−→ 0

Appendix E. Details on object recognition. The ideal objective is to actu-
ally compute the I-distance between D1 and D2 as described in section 7.2; however,
this is a very hard problem since there are m! m × m permutation matrices. The
choice of m is subject to compromise: on one hand, we want it to be big enough so

as to capture the metric structure of Si with the information given by (Q
(i)
n , d

Ω
hi

P
(i)
n

);

on the other hand, we want to be able to actually make the computations involved
without too much processing cost. Therefore we should attempt to circumvent this
m! search space by exploiting some other information we might have.

One possibility for bypassing this difficulty is to try to upper bound the I-distance
by some difference between eigenvalues of the matrices. However, it turns out that
one can easily find two distance matrices which have positive I-distance (they are
not cogredient) but have the same spectra. Then an upper bound should take into
account also another term that measures our inability to really differentiate distance
functions by looking only at their eigenvalues. Of course this information must then
be contained in the eigenvectors.30

A way of dealing with this particular issue is working with the spectral fac-
torization of each of the matrices. Let D1 = QDQT and D2 = Q̂D̂Q̂T , where
Q and Q̂ are unitary matrices and D and D̂ are diagonal matrices whose entries
are the eigenvalues of D1 and D2, respectively. Note that we are not saying any-
thing about the order in which those eigenvalues are presented; for convenience, let

30Another idea, for example, is the following: We know that the searched-for isometry (if it
exists) must be a Lipschitz continuous map, and therefore it makes no sense to consider the huge set
of transformations spanned by PMm. We leave the exploitation of this idea for future work.
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D11 = |D11| > |D22| > · · · > |Dmm| and D̂11 = |D̂11| > |D̂22| > · · · > |D̂mm|.31 Then
with little effort we can write

min
P∈PMm

‖D1 − PD2P
T ‖ ≤ ‖(Q− PQ̂)D‖ + ‖(Q− PQ̂)D̂‖ + ‖D − D̂‖.(27)

Note that if W is any matrix and T is diagonal, then ‖WT‖2 =
∑

k ‖W(:,k)tkk‖2 =∑
k ‖W(:,k)‖2t2kk where W(:,k) is the kth column vector of W . Using this observation,

we note that the first two terms in (27) can be bounded as follows (let Q = (q1| . . . |qm),

and Q̂ = (q̂1| . . . |q̂m)):

‖(Q− PQ̂)D‖ + ‖(Q− PQ̂)D̂‖ =

√∑
k

D2
kk‖qk − P q̂k‖2 +

√∑
k

D̂2
kk‖qk − P q̂k‖2.

Now, using the trivial inequality
√
a+

√
b

2 ≤
√

a+b
2 for all a, b ≥ 0, we finally arrive

at the expression

min
P∈PMm

‖D1 − PD2P
T ‖ ≤

√√√√ m∑
k=1

(Dkk − D̂kk)2 +
√

2

√√√√ m∑
k=1

(D2
kk + D̂2

kk)‖qk − P q̂k‖2.

(28)
This inequality holds for any P ∈ PMm. It is important to note that in case D1

and D2 are cogredient, all their eigenvectors will also be related through that same
permutation; therefore this inequality is sharp.32

Note that in the second term of (28), the values of ‖qi − P q̂i‖ are weighted by

(D2
ii+D̂2

ii), so one can think that since ‖qi−P q̂i‖ ≤ 2, the most important terms of the

sum will be those for which (D2
ii + D̂2

ii) is large. This is not a rigorous consideration,
but gives some guidelines on how to compute an approximate bound when the sizes
of the distance matrices are prohibitively large.

In some situations, the choice of the subsampled set size m that guarantees a
good metric approximation in the sense discussed above might be too large, making
the computation of the full bound (28) onerous. But still a measure of similarity
must be provided which does not require the computation of all of the eigenvalues
and eigenvectors of each distance matrix. Therefore, in order to estimate dI(D1, D2),
we use the following idea: Instead of computing all the eigenvalues and eigenvectors of
the matrices D1 and D2, compute the N � m more important ones, where important
means, in the light of the expression for the bound, those with the largest moduli, at
least for the part of the bound involving eigenvectors. Then, for a (computationally)
reasonable N we define the approximate error bound (still letting P be any convenient
choice of a permutation matrix)

e(N)
�
=

√√√√ N∑
k=1

(Dkk − D̂kk)2 +
√

2

√√√√ N∑
k=1

(D2
kk + D̂2

kk)‖qk − P q̂k‖2.(29)

31We have used Frobenius theorem [51], which asserts that nonnegative matrices have a posi-
tive largest absolute value eigenvalue. Note that we have also assumed that there are no repeated
eigenvalues.

32Note that from (27) one can obtain dI(D1, D2) ≤ ‖D − D̂‖ + (‖D‖ + ‖D̂‖)‖QQ̂T − P‖; then
one further idea to be explored is how to best approximate a given unitary matrix by a permutation
matrix. This would not only allow us to obtain an explicit bound for the I-distance, but would also

provide us with a low metric distortion way of mapping S1 (P
(1)
n ) into S2 (P

(2)
n ), with applications

like texture mapping, brain warping, etc.
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Now, we fix the permutation P as follows: Let S be the permutation matrix such
that Sq1 is a column vector whose components are sorted from largest to smallest.
Do the same with q̂1 to obtain Ŝ; then compare Sq1 with Ŝq̂1, which amounts to com-
paring q1 with ST Ŝ; hence we let P = ST Ŝ. We could again use a more sophisticated
way of choosing P , but this one suffices for demonstration purposes and, of course,
achieves equality in (28) when both matrices are cogredient.

Another possibility is to directly compare the distance matrices according to the
expression ‖D1 − PD2P

T ‖, using a certain sensible choice for P . We first put both
matrices in a “canonical” order. Let (i1, j1) be one position on the matrix D1 with
the maximum value. We then order the rest of the points in the set according to their

distances to either q
(1)
i1

or q
(1)
i2

from smallest to largest.33 This induces an ordering
for the matrix D1, letting P1 be the underlying permutation matrix. We do the same
with D2 and obtain P2. Finally we let

eG(D1, D2)
�
= ‖D1 − PT

1 P2D2P
T
2 P1‖,

and note that obviously dI(D1, D2) ≤ eG(D1, D2) and that the inequality is sharp.

E.1. Choice of the point cloud subset Q(i). In general, the number of points
in the cloud is too big. This means that the actual computation of the distance
matrices, if done using all the points in the cloud, and subsequent eigenvalue and
eigenvector computations (if needed) become onerous. Therefore we need a procedure
which allows us to select a small cardinality subset Qm of Pn for which we will actually
compute the approximate distance matrix, but still using Pn to define the offset
Ωh

Pn
inside which the computations are performed. This subset Cr ⊂ Pn must be

“representative” of the geometry of the underlying manifold. One way of selecting
those points is by not allowing them to cluster inside any region of the manifold. This
can be accomplished in practice by using the “packing idea” in [24]: Given m < n,
choose the first point c1 ∈ Cm randomly, then proceed by always choosing a point as
far as possible from the set of points that have already been chosen. End the process
when m points have been chosen. This is the procedure used in the experiments.
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