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An algorithm for the computationally optimal construction of intrinsic weighted
distance functions on implicit hyper-surfaces is introduced in this paper. The basic
idea is to approximate the intrinsic weighted distance by the Euclidean weighted
distance computed in a band surrounding the implicit hyper-surface in the embedding
space, thereby performing all the computations in a Cartesian grid with classical
and efficient numerics. Based on work on geodesics on Riemannian manifolds with
boundaries, we bound the error between the two distance functions. We show that
this error is of the same order as the theoretical numerical error in computationally
optimal, Hamilton—Jacobi-based, algorithms for computing distance functions in
Cartesian grids. Therefore, we can use these algorithms, modified to deal with spaces
with boundaries, and obtain also for the case of intrinsic distance functions on implicit
hyper-surfaces a computationally efficient technique. The approach can be extended
to solve a more general class of Hamilton—Jacobi equations defined on the implicit
surface, following the same idea of approximating their solutions by the solutions in
the embedding Euclidean space. The framework here introduced thereby allows for
the computations to be performed on a Cartesian grid with computationally optimal
algorithms, in spite of the fact that the distance and Hamilton—Jacobi equations are
intrinsic to the implicit hyper-surface. @ 2001 Academic Press

Key Words:implicit hyper-surfaces; distance functions; geodesics; Hamilton—
Jacobi equations; fast computations.

1. INTRODUCTION

Computing distance functions has many applications in numerous areas including m
ematical physics, image processing, computer vision, robotics, computer graphics, ¢
putational geometry, optimal control, and brain research. In addition, having the dista
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function from a seed to a target point, it is straightforward to compute the correspond
geodesic path, since this is given by the gradient direction of the distance function, b
propagating from the target toward the seed (see for example [18]). Geodesics are use
example for path planning in robotics [35]; brain flattening and brain warping in comp
tational neuroscience [56, 57, 60, 61, 68]; crests, valleys, and silhouettes computatior
computer graphics and brain research [7, 30, 62]; mesh generation [64]; and many app
tions in mathematical physics. Distance functions are also very important in optimal con
[59] and computational geometry for computations such as Voronoi diagrams and skele
[48]. Itis then of extreme importance to develop efficient techniques for the accurate and
computations of distance functions. It is the goal of this paper to present a computation
optimal technique for the computation of intrinsic weighted distance functions on impli
hyper-surface$.It is well known already, and it will be further detailed below, that these
weighted distances can be obtained as the solution of simple Hamilton—Jacobi equati
We will also show that the framework here presented can be applied to a larger clas
Hamilton—-Jacobi equations defined on implicit surfaces. We also discuss the applicatio
our proposed framework to other, nonimplicit, surface representations.

1.1. Distance Function Computation and Its Hamilton—Jacobi Formulation

Before proceeding, let us first formally define the conceptininsic weighted distances
onimplicit hyper-surfaces. Lef be a (codimension 1) hyper-surfacelRf defined as the
zero level set of a functiony : IRY — IR. That is,S is given by{x € IRY : y/(x) = 0}.
We assume from now on thdt is a signed distance function to the surfae(This is
not a limitation, since as we will discuss later, both explicit and implicit representatio
can be transformed into this form.) Our goal is, for a given pgirt S, to compute the
intrinsic g-weighted distance functiotid(p, x) for all desired pointx € S.2 Note that we
are referring to the intrinsig-distance, that is, the geodesic distance on the Riemanni
manifold (S, gll) (I stands for thed — 1) x (d — 1) identity matrix) and not on the
embedding Euclidean space. For a given positive weigiefined on the surface (we are
considering only isotropic metrics for now), tigedistance onS (that coincides with the
geodesic distance of the Riemannian manifddg?|l )) is given by

g A
ds(p, x) = CL';][TS]{LQ(C)}, (1)
where
b .
LgiC} 2 / g I dl )

is the weightedength functionaldefined for piecewis&€! curvesC : [a, b] — S, and
Cpx[S] denotes the set of curves piecewid&joining p to x, traveling onS. In general,

tAlthough all the examples in this paper are going to be reported for two-dimensional surfaces in 3D (h
denoted as 3D surfaces), the theory is valid for general dimension hyper-surfaces, and it will be presented ir
generality. A number of applications deal with higher dimensions. For example, for the general theory of harm
maps, in order to deal with maps onto general open surfaces, it is necessary to have this notion of intrinsic dis
[41]. In addition, higher dimensions might appear in motion planning, when explicitly assuming that the robo
not modeled by a point, thereby adding additional constraints to its movements.

2This can certainly be extended to any subsef of
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we will consider the definition to be valid for arfiydefined over the domain that the curve
may travel through.

We need to compute this distance when all the concerning objects are represente
discrete form in the computer. Computing minimal weighted distances and paths in gr:
representations is an old problem that has been optimally solved by Dijkstra [21]. Dijks
showed an algorithm for computing the pattQiin log n) operations, wheneis the number
of nodes in the graph. The weights are given on the edges connecting between the ¢
nodes, and the algorithm is computationally optimal. In theory, we could use this algorithrr
compute the weighted distance and corresponding path on polygonal (not implicit) surfa
with the vertices as the graph nodes and the edges the connections between them (see
The problem is that the optimal paths computed by this algorithm are limited to travel
the graph edges, giving only a first approximation of the true distance. Moreover, Dijkstr
algorithm is not a consistent one: it will not converge to the true desired distance when
graph and grid is refined [42, 43]. The solution to this problem, limited to Cartesian gric
was developed in [27, 51, 52, 59] (and recently extended by Osher and Helmsen, see |-
Tsitsiklis [59] first described an optimal-control type of approach, while independent
Sethian [51, 52] and Helmsen [27] both developed techniques based on upwind nume
schemes. The solution presented by these authors is consistent and converges to th
distance [49, 59], while keeping the same optimal complexityooh logn). Later this
work was extended in [32] for triangulated surfaces (see also [7, 36] for related works
numerics on non-Cartesian grids). We should note that the algorithm developed in [32
currently developed only for triangulated surfaces with acute triangles. Therefore, bef
the algorithm can be applied, as an initialization step the surfaces have to be preprocess
remove all obtuse triangles or other polygons present in the representation [31]. Follow
[52], we call thesdast marching algorithms

The basic idea behind the computationally optimal techniques for finding weighted d
tances, meaning these fast marching algorithms, is to note that the distance function sat
a Hamilton—Jacobi partial differential equation (PDE) in the viscosity sense; see, for «
ample, [38, 50] for the general topic of distance functions on Riemannian manifolds (an
nice mathematical treatment), and [12, 23, 31, 44, 46, 52] for the planar (and more intuiti
case. This Hamilton—Jacobi equation is given by

Vs d5]| = 0. (3)

whereV is the gradient intrinsic to the surface, aﬂﬁjis theg-distance from a given seed
point to the rest of the manifofél.

That is, we can transform the problem of optimal distance computation into the probil
of solving a Hamilton—Jacobi equation (recall thieis known, it is the given weight), also
known as the Eikonal equation. In order to solve this equation, the current state of knowle
permits us to accurately and optimally (in a computational sense) find (weighted) distan
on Cartesian grids as well as on particular triangulated surfaces (after some preproces
namely the elimination of obtuse triangles, see [6, 32]). The goal of this paper is to exte
this to implicit hyper-surfaces. In other words, we will show how to solve the above Eikon
equation for implicit hyper-surfaces.

% Note thatVs andds become the classical gradient and distance respectively for Euclidean spaces.
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Recall that although all the applications in this paper will be presented for 3D surfac
the theory is valid for ang-dimensional hyper-surfaces, and will then be presented in th
generality.

1.2. Distance Function and Geodesics on Implicit Surfaces

The motivations behind extending the distance map calculation to implicit surfaces
numerous: (a) In many applications, surfaces are already given in implicit form, e.g., [
13, 16, 25, 45, 46, 53, 66, 62], and there is then a need to extend to this important repre
tation the previously mentioned fast techniques. We could of course triangulate the impl
surface, eliminate obtuse triangles, and then use the important algorithm proposed in |
This is not a desirable process in general when the original data is in implicit form, sinc
affects the distance computation accuracy because of errors from the triangulation, and
adds the computational cost of the triangulation itself, triangulation that might not be nee
by the specific application. If, for example, what it is needed is to compute the distar
between a series of points on the surface, the computational cost added by the triangul
is unnecessary. Note that finding a triangulated representation of the implicit surface i
course dimensionality dependent, and adds the errors of the triangulation process. M
over, accurate triangulations that ensure correctness in the topology are computatiol
expensive, and once again there is no reason to perform a full triangulation when we m
be interested just in the intrinsic distance between a few points on the implicit surface. (k
is a general agreement that the work on implicit representations and Cartesian grids is r
robust when dealing with differential characteristics of the surface and partial different
equations on this surface. Numerical analysis on Cartesian grids is much more studiec
supported by fundamental results than the work on polygonal surfaces. It is even recogn
that there is no consensus on how to compute basic differential quantities over a triangul
surface (see, for example, [22]), although there is quite an agreement for implicit surfa
Moreover, representing an hyper-surface with structured elements such as triangles is
tainly difficult for dimensions other than 2 or 3. (c) If the computation of the distanc
function is just a part of a general algorithm for solving a given problem, it is not elegal
accurate, nor computationally efficient to go back and forth from different representation:
the surface.

Before proceeding, we should note that although the whole framework and theory
here developed for implicit surfaces, it is valid for other surface representations as v
after preprocessing. This will be explained and discussed later in the paper (Sectior
Moreover, we will later assume that the embedding is a distance function. This is nc
limitation, since many algorithms exist to transform a generic embedding function intc
distance one; see also Section 5. Therefore, the framework here presented can be aj
both to implicit (naturally) and other surface representations such as triangulated ones

In order to compute intrinsic distances on surfaces, a small but important numbel
techniques have been reported in the literature. As mentioned before, in a very interes
work Kimmel and Sethian [32] extended the fast marching algorithm to work on triang
lated surfaces. In its current version, this approach can only be used when dealing witl
triangulated surfaces and its extension to deal with higher dimensions seems very invol
Moreover, it can only correctly handle acute triangulations (thereby requiring a preproce
ing step). And of course, it doesn’t apply to implicit surfaces without some preprocess
(a triangulation).
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Another very interesting approach to computing intrinsic distances, this time worki
with implicit surfaces, was introduced in [16]. This will be further described below, but fir:
let's make some comments on it. First, this is an evolutionary/iterative approach, wh
steady state gives the solution to the corresponding Hamilton—Jacobi equation. Theref
this approach is not computationally optimal for the class of Hamilton—Jacobi equatic
discussed in this paper. (Although when properly implemented, the computational compl
ity of this iterative scheme is the same as in the fast marching method here proposed
inner loop is more complex, making the iterative algorithm slow@&écond, very careful
discretization must be done to the equation proposed in [16] because of the presenc
intrinsic jump functions that might change the zero level-set (i.e., the surface). On the ot
hand, the numerical implementation is not necessarily done via the utilizatrooraftone
schemesas required by our approach and all the fast marching techniques previously m
tioned (thereby having a theoretical er®t+/Ax) [19]), and better accuracy might then
be obtained.

In order to compute the intrinsic distance on an implicit surface, we must then sol
the corresponding Hamilton—Jacobi equation presented before. In order to do this |
computationally efficient way, we need to extend the fast marching ideas in [27, 45,
52, 59], which assume a Cartesian grid, to work in our case. Since an implicit surf
is represented in a Cartesian grid, corresponding to the embedding function, the first
most intuitive idea is then to attempt to solve th&insic Eikonal equatiorusing thefast
marchingtechnique. The first step toward our goal is to express all the quantities in t
intrinsic Eikonal equation by itgnplicit-extendedepresentations. What we mean is that
theintrinsic problem (we considey = 1 for simplicity of exposition),

4
ds(p) =0, )

{uvs ds()| =1 for peS
with p € S the seed point, is to be extended tolRfl (or at least to a band surrounditg,
and the derivatives are to be taken tangentiallfgto= 0}. Considering then the projection
ofthe Euclidean gradient onto the tangent spacgtofobtain the intrinsic one, and denoting
byoTthe Euclidean extension to the intrinsic distadgewe have to numerically solve, in
the embedding Cartesian grid, the equation

{||Vc§(x)||2 —|Vd(x) - V¥ (x)2=1 forxe IR )

dd(p) =0,
wherel (p) is the ray througtp normal to the level sets af.

This is exactly the approach introduced in [16], as discussed above, to build-up
evolutionary approach, given by the PDE

¢ +5gngo) (V [V4I2 — [Vg - VY2 - 1) =0, (6)
wherego(X) = ¢ (X, 0) is the initial value of the evolving function, generally a step-like

4The general framework introduced in [16] is applicable beyond the Hamilton—Jacobi equations discusse
this paper (see also [8, 17]). Here we limit the comparison between the techniques to the equations where
approaches are applicable.
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function (convolved with the signum) that tells inside from outside of the zero level-st
One then findsi(-) = ¢ (-, 00).

Of course, in order to obtain a computationally optimal approach, we want to sol
the stationary problem (5), and not its iterative counterpart (6). It turns out that the be
requirements for the construction of a fast marching method, even with the recent extens
in [45], do not hold for this equation. This can be explicitly shown, and has also be
hinted by Kimmel and Sethian in their work on geodesics on surfaces given as graph
functions®

To recap, the fast marching approach cannot be directly applied to the computa
of intrinsic distances on implicit surfaces defined on a Cartesian grid (Eq. (5)), and
state of the art in numerical analysis for this problem says that in order to compute
trinsic distances one either has to work with triangulated surfaces or has to use the
ative approach mentioned above. The problems with both techniques were reportec
fore, and it is the goal of this paper to present a third approach that addresses all tl
problems.

1.3. Our Contribution

The basic idea here presented is conceptually very simple. We first consider dsm:
offset of S. That is, since the embedding functignis a distance function, witls as its
zero level set, we consider all pointsn IR® for which | (x)| < h. This gives a region in
IRY with boundaries. We then modify the (Cartesian) fast marching algorithm mention
above for computing the distance transform inside thtsand surrounding. Note that
here all the computations are, as in the works in [27, 51, 52, 59], in a Cartesian grid.
then use this Euclidean distance function as an approximation of the intrinsic dista
onS. In Section 2 we show that the error between these two distances, under reasor
assumptions on the surfacg is of the same order as the numerical error introduced b
the fast marching algorithms in [27, 51, 52, $9Therefore, when adapting these algo-
rithms to work on Euclidean spaces with boundary adaptation described in Section 3,
obtain an algorithm for the computation of intrinsic distances on implicit surfaces wi
the same simplicity, computational complexity, and accuracy as the optimal fast marck
techniques for computing Euclidean distances on Cartesian‘gidSection 3 we also ex-
plicitly discuss the numerical error of our proposed technique. Examples of the algorit
here proposed are given in Section 4. Since Osher and Helmsen have recently showr
the fast marching algorithm can be used to solve additional Hamilton—Jacobi equatic
we show that the framework here proposed can be applied to equations from that c
as well; this is done in Section 5. This section also discusses the use of the framev
here presented for nonimplicit surfaces. Finally, some concluding remarks are giver
Section 6.

5We have also benefited from private conversations with Stan Osher and Ron Kimmel to confirm this clain

5In contrast with works such as [1, 47], where an offset of this form is just used to improve the complex
of the level-sets method, in our case the offset is needed to obtain a small error between the computed dis
transform and the real intrinsic distance function; see next section.

7 Although in this paper we deal with the fast marching techniques, other techniques for computing dista
functions on Cartesian grids, e.g., the fast technique reported in [11] for uniform weights, could be used as \
since the basis of our approach is the approximation of the intrinsic distance by an extrinsic one.
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2. DISTANCE FUNCTIONS: INTRINSIC VS. EXTRINSIC

The goal of this sectionis to present the connection between the intrinsic distance func
and the Euclidean function computed inside a band surrounding the (implicit) surface.
will completely characterize the difference between these two functions, mainly based
results on shortest paths on manifolds with boundary. The results here presented will
justify the use of the Cartesian fast marching algorithms for the computation of intrins
weighted distances on implicit surfaces.

Recall that we are dealing with a closed hyper-surfdde IR represented as the zero
level-set of a distance functiah : IRY — IR. Thatis,S = {y = 0}. Our goal is to compute
ag-weighted distance map on this surface from a seed pointS.

Let

@ 2 |J B h) = (xe Ry (0l <h)

XeS

be theh-offsetof S (hereB(x, h) is the ball centered at¢ with radiush). It is well known
that for a smoothS, 92y, is also smooth it is sufficiently small, see Appendix A for
references®, is then amanifold with smooth boundary

Our computational approach is based on approximating the solution dhtttresic
problem dg(p) is the intrinsicg-weighted distance of)

{|]ng§(p)|| =g for peS @
by that of theEuclidean(or extrinsiq one,

{HVdsgzh(P)H =g for peqy ©

d3, (@ =0,

whereg is a smoottextensiorof g in a domain containin@,, andd?Zh (p) is the Euclidean
g-weighted distance if2,. Our goal is to be able to control, for pointsﬁnlldg — dgh L)
with h. Note that we have replaced the intrinsic gradi€gtoy the Euclidean gradient and
the intrinsic distanc&ig(p) on the surface by the Euclidean distaruigg(p) in Qn. We
have then transformed the problem of computing an intrinsic distance into the problern
computing a distance in an Euclidean manifold with boundary.

We will show that under suitable (and likely) geometric conditionsSome can indeed
control ||d§ — dgh lL..cs) With h. In order to materialize this, we first need to briefly discuss
the extensior§j and to review some basic background material on Riemannian manifol
with boundary.

2.1. The Extension of the Weighg

We require thafj|s = g, and that§ is smoothand nonnegative withii2,. There are
situations when one has a readily available extension, and others in which the exten
has to be “invented.” We call the formeatural extensiomnd the lattegeneral extensian
Both cases, as argued below, will provide smooth functéns
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In many applications, the weiglgt: S — IR depends on the curvature structure of the
hyper-surface. Denotinds(-) : S — sIR*Y the second fundamental form &, and
A (Bs(X)) the set of its eigenvalues, this means that

9(x) = F(A (Bs(¥)),

whereF is a given function. In this case it is utteriaturalto take advantage of the implicit
representation by noting thBis(x) = Hy ) forxes, whereH,, is the Hessian ofs
andTS is the tangent space $atx (see [37]). Thenatural extension then becomes

§x) = F(A(H (X)), X € Qn, 9)

vj|TxS(><)

whereS(x) 2 {y € RY: v (y) = ¥ (x)}.

This extension is valid fofx € IRY : |y (x)| < 1/ M}, whereM absolutely bounds all
principal curvatures of; see Appendix A.

When the weight cannot be directly extended to be valid for a tubular neighborhood «
the hyper-surface, one has to do that in a pedestrian way. One such extension comes
propagating the values gfalong the normals aof in a constant fashion; i.e.,

gx) = g(Ts(x)), X € 2, (10)

whereTls() : IRY — S stands for the normal projection ong This extension is well
defined and smooth as long as there is a unfgo¢in S for everyx in the domain of
the desired extensiaR. Takingh sufficiently small we can guarantee ttap Qy, if Sis
smooth. See Appendix A for some details.

In practice, this extension can be accomplished solving the equation [14]

¢t +sgny)Vy - Vo =0

with initial conditions given by ang (-, 0), such that (-, 0)|s = g. Then§(-) 2 ¢ (-, ).

2.2. Shortest Paths and Distance Functions in Manifolds with Boundary

Since we want to approximate the problem of intrinsic distance functions by a probl
of distance functions in manifolds with boundary, and to prove that the latter converg
to the former, we need to review basic concepts on this subject. We will mainly inclu
results from [2, 3, 63]. We are interested in the existence and smoothness of the geoc
curves on manifolds with boundary, since our convergence arguments below depen
these properties. We will assume throughout this section(th&tm) is aconnectedand
completeRiemannian manifold with boundary (this will later become ltheffset 2, with
the metricg?ll , wherell now stands for the x d identity matrix).

DEFINITION 2.1 Letp, g € M, thenifdy(., -) : M x M — IRis the distance function
in M (with its metricm), a shortest path betwegnandq is a path joining them such that
its Riemannian length equads,(p, Q).

Now, sinceM is completefor every pair of pointg andq there exists ahortest path
joining them; see [2]. The following results deal with the regularity of this shortest path.
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B

FIG. 1. The minimal path isC?, but notC2.

THEOREM 2.1 Let (M, m) be a C manifold with C boundary B. Then any shortest
path of M is C*.

When(M, m) is a flat manifold (i.e.M is a codimension 0 subset IK® and the metric
m is isotropic and constant), it is easy to see thatshmgrtest pathmust be a straight line
whenever it is in the interior aM, and a shortest path of the bound&yvhen it is there.
This will be the situation for us from now on.

It might seem a bit awkward that one cannot achieve a higher regularity clags fian
the shortest paths, even by increasing the regularitylaf B, but a simple counterexample
will convince the reader. Think of4 as IR? with the open unit disc removed (see Fig. 1),
and its Euclidean metric. The acceleration in all the open seg(Adnt is 0, and in all the
open aro(P Q) is —&; that is, it points inward and has modulus 1. That is, even in mos
simple examplesC? regularity is not achievable. It is, however, very easy to check that i
this casey is actuallyLipschitz

For the general situation, in [3, 39] the authors proved that shortest paths ddpeatEtz
continuoudirst derivatives, which means that in fact shortest paths are twice differential
almost everywhergy Rademacher’s Theorem. This fact will be of great importance belov

For a more comprehensive understanding of the theory of shortest paths and dist:
functions in Riemannian manifolds with boundary, see [2, 3, 39, 63] and references ther

2.3. Convergence Result for the Extrinsic Distance Function

We now show the relation between the Euclidean distance in theSbaadd the intrinsic
distance in the surfacg. Below we will denoteds = d}, anddg, = d .

Observation 2.1. Since we assume the implicit surfageo be compact, the continuous
functionds : S x S — IR attains its maximum. Therefore, we can define the diameter «
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the set as

diam(S) 2 sup ds(p, q) < oo.
p.qes

Observation 2.2. SinceS C 2, we have that for every pair of poingg andq in S,
de, (P, Q) < ds(p, q), so in view of the previous observation we have

de,(p, q) < diamS) Vp,qeS.

Observation 2.3. Since we are assumiripto be a smooth extension gfto all 2 > Q4
(we stress the fact that the extension does not depend dhwa)| be Lipschitz in €,
and we callKy its associated constant. Further, we will denM@é maxxes) 9(x) and

A ~
Mg = SURyeq) G(X)-
We need the followindeemmawhose simple proof we omit (see, for example, [18]).

LEMMA 2.1. When &j-shortest path travels through an interior regiats curvature is
absolutely bounded by
va
Sup< (e ) _
e\ G(X)

The following Lemma will be needed in the proof of the theorem below. Its proof can |
found in Appendix B.

LEMMA 2.2. Let f:[a, b] — IR be a C([a, b]) function such that fis Lipschitz. Let
¢ € L*([a, b]) denote(one of) f’s weak derivativis). Then

1>

Bg

b b
/f’z(x)dx= ff’|g—/ f (X)@(x) dx.

We are now ready to present one of the main results of this section. We bound
error between the intrinsic distance 6nand the Euclidean one in the offs@f. As we
will see below, in the most general case, the error is of the diér(h being half the
offset width). We will later discuss that this is also the order of the theoretical error f
the numerical approximation in fast marching methods. That will lead us to conclude tl
our algorithm does keep the convergence rate within the theoretically proven order for
marching methods’ numerical approximation. However, for all practical purposes, the or
of convergence in the numerical schemes used by fast marching methods istthaeef
[49]. We will also argue that for all practical purposes we can guarantee no decay in
overall rate of convergence. We defer the detailed discussion on this to after the present
of the general bound below.

THEOREM2.2. Let A and B be two points on the smooth hyper-surfsi¢see Fig.2).
Letd = d?zh(A, B) and i = d2(A, B). Then for points on the surfacé, we have that
for sufficiently small h

d2 — df| < h? C(h)diam(S),

where Gh) depends on the global curvature structuretnd ong, and approaches a
constant when ki, O (it does not depend on A nor, Bre give a precise form of @) in the
proof).
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FIG. 2. Tubular neighborhood.

Proof. Letd, = dg, (A, B); ds = ds (A, B); and lety : [0, dy] denote &2, §-distance
minimizing arc-length parameterized path betweegr- y (0) and B = y(dy), such that
lyll = 1. Lets = I, (y) =y — ¥ (y)Vy¥(y) be the orthogonal projection gf onto S.
This curve will be as smooth as for small enoughh; see Appendix A. For sufficiently
small h, the boundary of2, will be smooth, sinceS is smooth and no shocks will be
generated (see next section and Appendix A). So we can assumeit@at and thaty is
Lipschitz, since it is a shortest path within a smooth Riemannian manifold with bounda
see Section 2.2 above.

It is evident that (this is a simple but key observation)

g (D 2
Lgly} =df < d? < Lgls),
since

(1) Scenandgls =9
(2) & need not be g-shortest path betweehandB on S.

We then have

|dg — dﬁ] =< |Lgf8} — Lgfy}l = ILgld} — Lglr}l
oh .
=< A 1@ 181 = g liviidt

‘dh . dh
S/ g Nl —G(S)IIJ'/IIIO|'E+/0 GO N¥ I —d) iyl dt

0
dh . dh
=/, g@d®llsl - I|7'/||I0|t+/O 16(8) — §(y)| dt

IA

dh ) dh
Mg/o IIJ'/—5||0|t+|<g/o ly — sl dt

dp

dy
Mg/o ||V1/f()/)'?Vl/f()/)-i‘l/f(J/)Hv/(J/)J'/Hdt+Kg/0 v (Vi (y) dt

dh dh
M, |w<y).y|dt+hmg/ IHy ()71l dt + Kgh dh.
0 0

IA

We now bound the first two terms at the end of the preceding expression.
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1. We first bound the second term in the preceding expression; this will be an ingredi
to the bounding of the first term as well. We have

IHy )yl < sup [Hy(Pvll= sup max(|A(p)l, (P,
{v:llvll=1; p:d(p,S)<h} {p:d(p,S)<h}

wherei(p) andw(p) denote the largest and the smallest eigenvalié,aip), respectively.

Now, as we know from Appendix A, the maximum absolute eigenvalug,afp), K (p),
is bounded by

Ms

K _—
P = T (M

whereMs is the maximum absolute eigenvaluetbf |s; that is,

Mg = sup max [ (Hy (X))1,
{xeS

wherel; (-) stands for thé-th eigenvalue of a symmetric matrix.
Then

dn MS
H ’ —
/O IHy (v ($)7(S)lds < dh— M s
2. Let us define the functiof : [0, dn] — IR, f(t) = ¥ (¥ (t)). Then formallyf (t) =
Vy(y®) -yt and ft) =Hy,ymO)y®), y®] +VY(y ) -y @®. Sincg y() is
Lipschitz, andys is regular we can guarantee thif-) is also Lipschitz, sof (-) exists
almost everywhere. We want to bound

dh
/ |f (0 dt.
0

We note first thatf (0) = f(dy) =0, and|f(t)| < h, |f(t)] < T hM + By for almost
everyt € [0, dy]. In fact, we have that for those subintervals ofdQ] in ‘which the shortest
path travels througl 2y, either f (t) = h, or f(t) = —h for the whole subinterval, and
thereforef (t) is constant for each subinterval, §¢t) = 0 there. On the other hand, when
y is in the interior ofQy, it is a §-geodesic, so its acceleration is boundedlay as we
have seen in Lemma 2.1. Therefore, we conclude|th@j| < Hyaply ), ¥ ]| + Bg.
Combining all this we have that for almost everg [0, di],

|f(t) — By < sup Hy(P)[v, v]l < sup  max(A(p)l, lu(p)))
{v:llv]|=1;d(p,S)<h} {p:d(p,S)<h}

and the given bound follows as before.

Applying Cauchy—Schwartz inequality we obtain

dn dn
/ f®ldt< /@ [ 2 dt.
0 0
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Now using Lemma 2.2:

dn
fz(t)dtzfﬂ / ffdt=— / f fdt
0

Ms
|f||f|dt<(dh)h(l_hMS+Bg>.

IA

0

Finally,

/%V<)'qud>h-;ﬂi—+&
| Y(y)-yldt < (dh 1 nas T8I

Using both computed bounds, we find that

Mg
1/1 hM8+Bg+Mfl hM8+K\/—] n

(11)

|dg — df| < diam(S)vh | M

From the preceding Lemma we obtain:

COROLLARY 2.1 For a given pointge S

Hdgh’s(q’ )= dg(q’ ')HLN(S) M’ 0.

Remark. The rate of convergence obtained with the techniques shown above is of or
/h. A quick look over the proof of convergence shows that the term responsible foYthe
rate isfodh | f (t) dt. All other terms have the higher orderlofSuppose we can findfaite
collection of (disjoint) intervals; = (g, by) such thasgn( f) is constant { is monotonic)
within eachl;, U I; € [0, dy], whereN is the cardinality of that collection of intervals,
and f (t) = 0 fort € [0, dn]\ UN, 1;. Then, we could write

dn N . b N .
AHMM=Zwmmm/mmmemmmmm4@»
i=1 a i=1

N

N
=) 1fo) - f@)l <> (fbl+If@))

i=1 i=1
2Nh since f (t) = ¥ (v (1)) andy (-) travels throughy,

IA

obtaining a higher rate of convergenée|t is quite convincing that cases wheRe= oo
can be considered pathological. We then argue that for all practical purposes the rat
convergence achieved is indekdat least). Moreover, for simple cases like a sphere (0
other convex surfaces), it it very easy to show explicitly that the error is (at least) ofrofder
Notwithstanding, we are currently studying the space of surfaces and ngefacsvhich

we can guarantee thaét < oo, and advances in this subject will be reported elsewhere.

8In this case, as in the case of convex surfaces, the geodesic is composed of two straight lines inside the
tangent to its inner boundary, and a geodesic on the inner boundary of the band; see Fig. 1.
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This shows that we can approximate the intrinsic distance with the Euclidean one on
offset band2,,. Moreover, as we will detail below, the approximation error is of the sam
order as the theoretical numerical error in fast marching algorithms. Thereby, we can
fast algorithms in Cartesian grids to compute intrinsic distances (on implicit/implicitize
surfaces), enjoying their computational complexity without affecting the convergence r
given by the underlying numerical approximation scheme.

3. NUMERICAL IMPLEMENTATION AND ITS THEORETICAL ERROR

In this section we first discuss the simple modification that needs to be incorpora
into the (Cartesian) fast marching algorithm in order to deal with Euclidean spaces w
manifolds with boundary. We then propose a way of estimating the (now discrete) off
h, and bound the total numerical error of our algorithm, thereby showing our assertion t
the error with our algorithm is of the same order as the one obtained with the fast marct
algorithm for Cartesian grids (or triangulated 3D surfaces).

As stated before, we are dealing with the numerical implementation of the Eikor
equation inside an open, bounded, and connected dofadthis will later become the
offsetQ2,). The general equation, whéh(x) is the weight (it become§ for our particular
case), is given by

{||Vf(x)|| =P(X) VXxeQ 12)

f(r)=0,

with r the seed point. Note that following the results in the previous section, we are n
dealing with the Eikonal equation in Euclidean space, and so the Euclidean gradient is (
above.

The upwind numerical scheme to be used for this equation is of the(fasmn= Ax, =
<= AXg = AX) [49],

{Z‘Ll max(f(p) — mj, 0) = (AX)2P?(p) )

m; = min(f(p+ Ax&)), f(p — Ax§))),
where f is the numerically computed value éffor every pointp in the discrete domain
D(Q, AX) 2 QN (ZAX).

Here,§ with j = 1,2, ..., d, are the elements of the canonical basi#Rf

We now describe the fast marching algorithm for solving the above equation. For t
we follow the presentation in [52]. For clarity we write down the algorithrpseudo-code
form. Details on the original fast marching method on Cartesian grids can be found in
mentioned references.

At all times there are three kinds of points under consideration:

e NarrowBand. These points have to them associated an already guessed value fo
and are immediate neighbors to those points whose value has already been “frozen.”
e Alive. These are the points who$evalue has already been frozen.
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e Far Away. These are points that haven't been processed yet, so no tentative ve
has been associated to them. For that reason, they fhaveo, forcing them not to be
considered as part of the up-winding stencil in the Gudunov’s Hamiltonian.

The steps of the algorithm include the following

e Initialization:

1. Setf = 0 for every point belonging to the seiljve]. These are the seed point(s)
if they lie on the grid. If the seed is not a grid point, its correspondilegghbors’ are
setAlive and are given an initial valué simply computed via interpolation (taking into
account the distance from the neighbor grid points to the seed point).

2. Find a tentative value of for every Neighbor of an Alive point and tag each
NarrowBand.

3. Setf = oo for all the remaining points in the discrete domain.

e Advance

1. Beginning of loop: Let pmin) be the point [NarrowBand], which takes the least
value of f.

2. Insert the poinpmi to the set Alive] and remove it from INarrowBand].

3. Tag asNeighbors all those points in the discrete domain that can be written i
the form pmin = AX€;, and belong toNlarrowBand] U [FarAway]. If a Neighbor is in
[FarAway], remove it from that set HarAway]) and insert it to NarrowBand].

4. Recalculatef for all Neighborsusing Eq. (13)

5. Set Neighbor] = empty set

6. Back to the beginning (step 1).

The boundary conditions are taken such that points beyond the discrete domain t
f = 0.

The condition that is checked all the time, and that really defines the domain the algorit
is working within, is the one that determines if a certain pajris Neighbor of a given
point p that belongs to the domain. The only thing one has to do in order to make t
algorithm work in the domaii®2,, specified by{x € IR? : |/ (x)| < h} is change the way
theNeighbor checking is done. More precisely, we should check

q € Neighbor(p) iff {(|¥(q)| < h) && (q can be written likep + Ax&;)},

the emphasis here being on the tégt(g)| < h.” We could also achieve the same effect by
giving an infinite weight to all points outsid@;,; that is, we treat the outside 6f, as an

obstacle. Therefore, with an extremely simple modification to the fast marching algorith
we make it work as well for distances on manifolds with boundary, and therefore, f
intrinsic distances on implicit surfaces. This is of course supported by the convergel
results in the previous section and the analysis on the numerical error presented below

3.1. Bounding the Offseth

We now present a technique to estimatthe size of the offset of the hyper-surfagéat
actually defines the computational dom&ip. The bounds ot are very simple. On one
hand, we neellto be large enough so that the upwind scheme can be implemented, mear
thath has to be large enough to include the stencil used in the numerical implementati

9 For a grid pointp, any of its 2D-neighboring points can be written lige: Ax;& .
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FIG. 3. WE depict the situation that leads to the lower boundforthe 2D case. In red: the curve. In black:
the centers oB(x € S, d¥2Ax). In green: the points dP(Q,,, Ax) that fall insideB(x, d*?Ax) for somex € S,
and in blue those that don't.

On the other handh has to be small enough to guarantee fe@atemains simply connected
with smooth boundaries and thiitemains smooth insid@;,.

Let M be as before a bound for the absolute sectional curvatuse ahd letAx be
the grid size. In addition, &tV be the maximal offsetting of the surfadethat guarantees
that the resulting set remains connected and different parts of the boundary of that se
not touch each other. We show below that a suitable boundimgi®{recall thatd is the
dimension of the space),

AxJa<h<min{1,w}. (14)
Ms

Let us introduce some additional notation. We denoteddithe unit cell of the computa-
tional grid. Letx be a pointirt2y; we denote by (x) the number of cell€ 1 (x), . . ., Cnx) (X)
that contairx. It is clear that ifx € D(Q2,, Ax) (itis a grid point), therx is contained in 2
cells havingx as a vertex. It is also clear thatx) < 29. For a given celC we callP(C)
the set of points oD (2}, AX) that compose€ (i.e., its vertices). We will denote bg(x)
the selJ'® C; (x), and byP(x) the sel J'* P(C; (x)).

The lower bound comes from forcing that, for everg S, all points inC(x) lie within
Q@ (note of course that we wahtto be as small as possible); see Fig. 3. That is,

U C(X) C Q.

XeS

Once again, this constraint comes in order to guarantee that there are “enough” poin
make the discrete calculations. We try to mék&) C 5(x, 1), whereC(x, |) stands for the
hypercube centered i, with side length B, and sides parallel to the gridding directions.
The worst scenario is whenis a point in the discrete domain, and we must HaxeAx.
Finally, we observe tha(x, |) c B(x, 1+/d). The condition then becomes

| Bx. axv/d) € @y = | ] Bx. h).

XeS xeS

which provides the lower bount, > Ax+/d.
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The upper bound includes two parts. First, we shouldn’t go beyndince if we do,
different parts of the offset surface might touch each other, a situation that can even cr
a nonsimply connected baifz},. The second part of the upper bound comes from seekin
that when traveling on a characteristic lineypfat a pointp of S, no shocks occur inside
Q. It is a simple fact that this won’t happenhf< Mis; see Appendix A. It is extremely
important to guarantee this both to obtain smooth boundarieQf@nd to obtain smooth
extensions of the metrig (§).

Note of course that in generdl,and alsaAx can be position dependent. We can use al
adaptive grid, and in places where the curvatur§ @fhigh, or places where high accuracy
is desired, we can makgx small.

3.2. The Numerical Error

It is time now to explicitly bound the numerical error of our proposed method. As stat
above, itis our goal to formally show that we are within the same order as the computation:
optimal (fast marching) algorithms for computing distance functions on Cartesian gri
Note that the numerical error for the fast marching algorithm on triangulated surfaces
not been reported, although it is of course bounded by the Cartesian one (since this pro\
a particular “triangulation”).

3.2.1. Numerical Error Bound of the Cartesian Fast Marching Algorithm

The aim of this section is to bound a quantity that measures the difference between
numerically computed valuéd(p, -) and the real valued(p, -). Any such quantity will
compare both functions afi, but in principle the numerically computed value will not be
defined all over the hyper-surface. So we will be dealing with an interpolation stage, tl
we comment further below in Section 3.2.2.

Let us fix a pointp € S, and letf(-) be the numerically computed solution (according
to (13)), andf (-) thereal viscosity solution of the problem (12). The approximation errot
is then bounded by (see [49])

> 1
somax 1T(p) = F(p)l = CL(Ax)?, (15)
whereC_ is a constant. In practice, however, the authors of [49] observed first-order act
racy. As we have seen, we also find an error of ofdér for the general approximation of
the weighted intrinsic distance éhwith the distance in the bar@dy,, and a practical order
of h (see Remark and Theorem 2.2).

Before proceeding with the presentation of the whole numerical error of our propos

algorithm, we need the following simple lemma whose proof we omit.

LEMMA 3.1. Foraconvex set D Q,andy, z € D, f satisfies
1@ = fWI = IPle~@llz— Y.

Remark. Using the preceding Lemma and (15), it is easy to see that frch that
C(x) C @,

1f(p) — f(@] < 2CL(AX)? + ||P||L~@VdAX, Vp,q € P(X) (16)

a relation we will shortly use.
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3.2.2. The Interpolation Error

Since following our approach we are now computing the distance function in the be
@, in the corresponding discrete Cartesian grid, we have to interpolate this to obtain
distance on the zero level-s&t This interpolation produces a numerical error which we
now proceed to bound.

Given the functiort : D(2, AX) — IR (2 being a generic domain, which becomes the
band®, for our particular case), we define the functifxig) : 2 — IRthroughaninterpola-
tion scheme. We will assume that the interpolation error is bounded in the followingdway

-7 — mi
y:g(l;’) 1Z(y) O = ng)ﬁ(l)ﬁ $(2 ZQJ&)C(Z)

for everyx € Q.

3.2.3. The Total Error

We now present the complete error (numerical plus interpolation) introduced by c
algorithm, without considering the possible error in the computatiod ¢r in other
words, we assume that the weight was already given in the whole®gnd

Let p be a point inS. We denote by

° dg(p, ) : § — IR theintrinsic g-distance function fronp to any point inS.
e d?(p.") : @n — IR thed-distance function fronp to any other point irf2y.

g(p ) : D(2h, AX) — IR thenumerically computesalue ofdg(p, -) to any point
in the dlscrete domain.

o Z(dy )(p, ) S — R the result of mterpolatmgh (that's only specified for points in
D(S2h, AX)) to points inRY > S.

The goal is then to bounwg(p, I(d )(p, )lL=(s), and we proceed to do So now.
Letx be inS andy in P(x), then

|d2(p. %) — Z(dd) (p, ¥)| < |d2(p, ) — d¥(p, x)| + |de(p, ) — d(p, )|
+1d3(p. y) — d3(p. y)| + [dd(p. y) - Z@D)(p. x)|. (17)

and using Proposition 2.2, Lemma 3.1 (15), and simple manipulations (in that order)
obtain

|d2(p. %) — Z(d) (p. %)|
< C(hydiamS)h? + Mgl|x — y| +CL(Ax)%+(maxd (p.y) — min ddcp, y))

The last term can be dealt with using (16). Since we want haft0 and 5 h « 1 oo, inorder
to have increasing fidelity in the apprommaﬂondﬁf by its numeric counterpactf]J 1we
can choose (for instancé)= C, (Ax)? for some constar, > +/d andy < (0, 1). We

19 One may imagine several interpolation schemes satisfying this not-stringent-at-all condition.
1 This way, we will have an increasing number of pointsan
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then obtain
[d8p, ) = Z(A) (P, ) sy = (AN C(AX; S), (18)

whereC(AX; S) goes to a constant (that depends&nas Ax | 0, and this provides the
desired bound.

To recap, we have obtained that the use of an Euclidean approximation in thpsmd
the intrinsic distance function on the level-setloesn’t (meaningfully) change the order of
the whole numerical approximation, in the worst case scenario. While in the most gen
case the theoretical bound for the error of our method is of driéiand the general order
of the error of the underlying numerical scheme Asx)'/2, for all practical purposes the
approximation error (ove) between both distancedd andd?) is of orderh (see remark
after Corollary 2.1), and the practical numerical error bet\/\dfeanddg is of order(Ax)#

(for someg e [%, 1) for our first order schemes). Then, the practical bound for the total erri
becomes something of ordgkx)™"-¥) Therefore, choosing a big enougli<1) dispels
any concerns about worsening the overall error rate when doing Cartesian computation
the band?

To conclude, let’s point out that since we are working within a narrow b&mgl ¢f the
surfaceS, we are actually not increasing the dimensionality of the problem. We can th
work with a Cartesian grid while keeping the same dimensionality as if we were workil
on the surfacé?

4. EXPERIMENTS

We now present a number of 3D examples of our algorithm. Recall that although all 1
examples are given in 3D, the theory presented above is valid for any dimehsidh

Two classes of experimental results are presented. We show a number of intrinsic
tance functions for implicit surfaces, as well as geodesics computed using these functi
In order to compute interesting geodesics, we use also nonuniform weights, permitting
computation of crest/valleys, and optimal paths with obstacles. We also experimentally c
pare our results with those obtained on triangulated surfaces using the fast marching t
nigue developed by Kimmel and Sethian (for this we use the results and software repo
in [6]).

Figures 4, 5, and 6 show the intrinsic distance function for implicit surfaces comput
with the method here proposegl £ 1). An arbitrary seed point on the implicit surface has
been chosen, and pseudo colors are used to improve the visualization. Red corresp
to low values of the distance and blue to the high ones. We observe that, as expectec
distance (colors) vary smoothly, and that close points have similar colors and far poi
have very different colors (close and far measured on the surface of course).

InFig. 7 we compare the result of our approach with that of fast marching on a triangula
surface (all triangulated-surface computations were done with the package reporte
[6]). We also show absolute differences (error) between distances obtained through |

12 Note that the numerical scheme used by the fast marching algorithm decreases its accuracy when nonc
entiable points of the distance appear, this can happen for instance when the domain contains the cut locus
initial set[15]. In any case(Ax)% is the slowest error rate achievable.

13The number of points in the band can be roughly estimated by the quamtitred S] when Ax = 1.
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FIG.4. Distance maps from a pointonthe sphere, torus, and teapot (three views are presented for each mq

approaches. The particular pattern of the error is the subject of future research. In Fi
we show level lines of the intrinsic distance function computed with the technique he
proposed.

Before concluding this part of the experiments, let's give some technical details
the implementation. The code for the examples in this paper was written in C++. |
visualization purposes, VTK was used. Most of the “hard code” was done taking advant
of Blitz++'s double templatized arrays and related routines, see [9]. The implicit mod
used in this paper were obtained from [67] (other techniques, e.g., [40], could be use
well). All the code was compiled and run in a 450 Mhz Pentium 111, with 256 Mb of RAM
working under Linux (RedHat 6.2). The compiler used wgss-2.91 .66 and the level of
optimization was 3. In Table 1 we show running times of the intrinsic distance map algorit|
for some of the implicit models we used, along with the corresponafifsgtvalue h) and
size and number of grid points i@, for each model.

4.1. Geodesics on Implicit Surfaces

To find geodesic curves on the implicit surface, we backtrack starting from a specif
target point toward the seed point, while traveling on the surface in the direction giv



FIG.5. Distance map from a point on a portion of white/gray matter boundary of the cortex.

FIG. 6. Distance map from one seed point on a knot. In this picture we evidence that the algorithm wo
well for quite convoluted geometries (as longhais properly chosen). Note how points close in the Euclidean
sense but far away in the intrinsic sense receive very different colors, indicating their large (intrinsic) distanc

750
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Ro g

FIG. 7. Top: Distance map from a single seed point (situated at the nose) on an implicit lguany)( The
figure on the top-left was obtained with the implicit approad) bere presented, while the one on the top-right
was derived with the fast marching on triangulated surfagdgfstéchnique. Bottom: Three views of the absolute
difference between both distance functiods € d,). The maximal difference (error between the distances) is
4.1439, being 95599 the maximal computed distance in the band.

by the (negative) intrinsic-distance gradient. This means that after we have computec
intrinsic distance function as explained above, we have to solve the following ODE (whi
obviously keeps the curve @):

{f’ =—Vyd3 ()
yO) =peS,

where

v, dd (p) 2 vdd (p) — (VA (p) - V¥ (P) Vi (p)

TABLE 1
Model Size D (2, AX) h Running Time (secs)
Brain 122x 142 x 124 168603 175 94
Bunny 81x 80 x 65 38107 175 199
Knot 80x 81x 44 16095 10 0.76
Sphere 70< 70x 70 11,800 175 065
Torus 64x 64 x 64 21704 175 116

Teapot 80x 55 x 46 24325 175 122
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FIG. 8. Top: Level lines for the intrinsic distance function depicted in Fig. 7 (left). Bottom: Level lines
for the intrinsic distance function depicted in Fig. 4 (second row). In both rows, the (22) levels shown :
0.03,0.05,0.1, ..., 0.95,0.97 percent of the maximum value of the intrinsic distance, and the coloring of th
surface corresponds to the intrinsic distance function. Three views are presented. Note the correct sepa
between adjacent level lines. Note also how these lines are “parallel.”

is the gradient oﬂgh at p € S projected onto the tangent spaceste- {y = 0} at p. Since
we must discretize the above equation, one can no longer assume that at every instar
geodesic pathy will lie on the surface, so a projection step must be added. In additiol
since all quantities are known only at grid points, an interpolation scheme must be u
to perform all evaluations at positions given py We have used a simple Runge—Kutta
integration procedure, with adaptive step, namely an ODE23 procedure.

Before presenting examples of geodesic curves, we should note that we are assuming
degh, the extrinsic gradient of the distance in the band, is a good approximatiosuds
the intrinsic gradient of the intrinsic distance (and not plfﬁta good approximation crfg
as we have previously proved). Bounding the error between these two gradients, e.g., U
the framework of viscosity solutions (since intrinsic distances are not necessarily smoo
is the subject of current work (see also next section for a numerical experiment).

The figures described next illustrate the computation of geodesic curves on impl
surfaces for different weights In all the figures the geodesic curve is drawn on top of the
surface, which is colored as before, colors indicating the intrinsic weighted distance.

In Fig. 9 we present both the geodesic curve computed with our technique and
one computed with the fast marching algorithm on triangulated surfaces following t
implementation reported in [6].

In Fig. 10 we show the computation of sulci (valleys) on an implicit surface representi
the boundary between the white and gray matter in a portion of the human cortex (c
obtained from MRI). Here the (extended) weighis a function of the mean curvature
given by [6]

~ . p
Guatey() = -+ (MO0 — minM(y)) "
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whereM stands for the mean curvature of the level setg p$o it is computed simply as
M (x) = Ay (X). In the example presented we used= 100 andp = 3. More details on
the use of this approach for detecting valleys (and creases) can be found in [6] and ir
references therein.

InFig. 11 we show the computation of geodesic curves with obstacles on implicit surfac
This is an important computation for topics such as motion planning on surfaces.

4.2. Simple Numerical Accuracy Validations

We conclude the examples with some simple numerical validations. Since for a sph
for instance, the real distances can be computed, we compare these with those numer
computed with our algorithm. As previously explained, for this case the error of our propo:
band-based approximation of the intrinsic (continuous) distance is of br@tually, it
can be shown that the order is slightly superlinear). We have tested the computed dist
between given seed points in the sphere for a number of different grid sizes (resolution:
the cube [01]%, obtaining the errors given in Table 2. In obtaining the data we have us
h = 2(Ax)%7. It can be observed an overall error

(Ids — Z@ o)

rate given approximately bgax)%653, )

Although a thorough study of the approximationsafd? by V],,dgh will be the subject
of future research, we will present below some numeric evidence. Note of course that
main concern, as previously explained, is at the cut locus (singularities on the gradier
the distance function). To the best of our knowledge, complete analysis of the accurac
the gradient of the intrinsic distance has not yet been performed for triangulated surfac

TABLE 2
Size h Overall Numerical Error
100 Q0079621 0111035
120 Q070081 0101189
140 0062912 0090596
160 Q057298 0084766
180 Q052764 0077357
200 Q049012 0072119
220 Q045849 0069262
240 Q043140 0064085
260 Q040789 0061003
280 Q038727 0057780
300 Q036901 0056024
320 Q035271 0053569
340 Q033806 0051469
360 Q032480 0048853
380 Q031273 0047292
400 Q030170 0046195
420 Q0029157 0044747
440 0028223 0043254
460 Q027358 0041999
480 Q026555 0040501

500 0025807 0039396
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FIG. 9. Top: Distance map (weight 1) and geodesic curve between two points on an implicit bunny. We
show two geodesics superimposed, the black one is the one obtained via the implicit back propagation desc
in the text, while the white one is obtained when performing the back propagation computation in the triangulz
surface. It is important to note that in both cases the distance function used is the one computed with our imj
approach; to feed the data to the triangulated surfaces back-propagation algorithm, we firstinterpolated the int
distance to points onto the triangulated surface. We can clearly see that both geodesics overlap almost en
justifying the proposed implicit back propagation approach when compared to the one on the triangulated sur
Bottom: We repeat the top figure, but now for the white cug) ¢he distance used was also computed on the
triangulated surface. In other words, the black cuig €orresponds to complete implicit computations, both
distance and back propagation, while the white one corresponds to complete computations on the triangu
domain. For this particular example, the geodesic obtained with the computations on the implicit surface is actt
shorter than the one obtained with computations on the triangulated representation.
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FIG. 10. These four figures show the detection of valleys over implicit surfaces representing a portion
the human cortex. We use a mean curvature based weighted distance. In the left-upper corner we show the
curvature of the brain surface (clipped to improve visualization). It is quite convincing that this quantity can
of great help to detect valleys. In the remaining figures, we show two curves over the surface, whose colc
correspond to the mean curvature (not clipped, from red, yellow, green to blue, as the value increases). Th
curve corresponds to theatural geodesic § = 1), while the white curve is the weighted-geodesic that shoulc
travel through “nether” regions. Indeed, a very clear difference exists between both trajectories, since the v
curve makes its way through regions where the mean curvature attains low values. The figure in the right
guadrant is a zoomed view of the same situation.

We make all our computations again for simplicity, over a sphere, takiadl (we will
discard the superscripgsandg for the remains of this section). As an indicator of how well
Vg, approximatesVsds (overS) we look at how much the quantityv, dq, || differs
from 1. In Fig. 12 we show nine histograms of the aforementioned quantity, for 1000 poi
on the sphere and for nine (increasing) values.dt can be observed that the values of
IV dg, || spread more and more grows.

5. EXTENSIONS

5.1. General Metrics: Solving Hamilton—Jacobi Equations on Implicit Surfaces

Since the very beginning of our exposition we have restricted ourselvesstiopic
metrics. As stated in the introduction, this already has many applications, and just a
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FIG. 11. Distance map and geodesic curve between two points on an implicit bunny surface with an intrin
obstacle on it. We now use a binary weight= {1, oo}, being infinity at the obstacle. This permits, as illustrated
in the figure, the computation of optimal paths with obstacles on implicit surfaces. The blue path corresponc
the obstacle-weighted distance function, and the white one to the najutal ] distance function. Both geodesics
are shown over the surface of the bunny, the pseudocolor representing the weighted distance for the surfac
obstacle. The obstacle is also shown in blue. Note that the geodesic is not touching the obstacle due to the lov
resolution used to define it in this example (low resolution which makes it actually not a binary but a multivalu
obstacle).

were shown in the previous section. Since the fast marching approach has been rec
extended to more general Hamilton—Jacobi equations by Osher and Helmsen [45], we
immediately tempted to extend our framework to these equations as well. These equal
have applications in important areas such as adaptive mesh generation on manifolds,
and semiconductors manufacturing.

Then, we are led to investigate the extension of our algorithm to general metrics of
form, G : S — IR%*Y, that is, a positive definite 2-tensor. Our new definition of weighte
length becomes

b
Let) 2 [ y/eemico.capat
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FIG. 12. Histograms of|V,dg, || for several (increasing) values bf for 1000 points uniformly distributed
on a sphere. From left to right and top to bottom, the histograms are plotted for increasing values of

and the problem is to find for everye S (for a fixedp € S),
dS(x, p) 2 inf {Le(C)}. 19
S0P = inf (La(C)) (19)

As before, we attempt to solve the approximate problem in the Bangvith an extrinsic
distance

a0 p 2 inf (La(©). (20)

where

A b ~ . .
Lsier 2 [ \/Bewco.coat

for an adequate extensidh of G. The solution of the extrinsic problem satisfies (in the
viscosity sense) the Eikonal equation

G Ho[vds, vdG] = 1. (1)

The first issue now is the numerical solvability of the preceding equation using a f
marching type of approach. Osher and Helmsen [45] have extended the capabilities o
fast marching to deal with Hamilton—Jacobi equations of the form

H(x, V) =a(x)
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for geometrically based Hamiltoniamé(x, p) : Q(C IRY) x IRY— IR that satisfy

H(x, p) > O ifp#£0
H(x, p) is homogeneous of degree 1jn (22)
PiHL (X, p) >0 for 1<i <d VxeQ,Vp.

It easily follows that these conditions hold for (21) considering

H(x, p) 2 /(G-H 0[P, pl,

when the matrixG—1(x) is diagonal. Therefore, we can solve this kind of Hamilton—Jacok
equations (the extrinsic problem) with the extended fast marching algorithm.

In order to show that our framework is valid for these equations as well, all what v
basically need to do is to prove that the extrinsic distance (20) on the &ffsainverges to
the intrinsic one on the implicit surfac® i.e., (19). This can be done repeating the steps il
the convergence proof previously reported in Section 2.3 for isotropic metrics. Combin
this with the results of Osher and Helmsen we then obtain that our framework can
applied to a larger class of Hamilton—Jacobi equations: general intrinsic Eikonal equatic
The extension of these ideas to even more general intrinsic Hamilton—Jacobi equatior
the form H (x, Vsu) = &(x) X € S remains to be studied, and eventual advances will b
reported elsewhere.

5.2. Nonimplicit Surfaces

The framework we presented was here developed for implicit surfaces, although it app
to other surface representations as well. First, if the surface is originally given in polygol
or triangulated form, or even as a set of unconnected points and curves, we can use a nu
of available techniques, e.qg., [34, 40, 47, 55, 58, 65, 67] (and some very nice public dor
software [40]), to first implicitize the surface and then apply the technique here projjose:
Note that the implicitation needs to be done only once per surface as a preprocessing
and will remain valid for all subsequent uses of the surface. This is important, since mé
applications have been shown to benefit from an implicit surface representation. Moreo
as we have seen, all what we need is to have a Cartesian grid in a small band arc
the surfaceS. Therefore, there is no explicit need to perform an implicitation of the give
surface representation. For example, if the surface is given by a cloud of unconnected pc
we can compute distances intrinsic to the surface defined by this cloud, as well as intrir
geodesic curves, without explicitly computing the underlying surface. All that is needec
to embed this cloud of points in a Cartesian grid and consider only those points in the ¢
at a distancé or less from the points in the cloud. The computations are then done on tl
band.

6. CONCLUDING REMARKS

In this article we have presented a novel computationally optimal algorithm for tt
computation of intrinsic distance functions and geodesics on implicit hyper-surfaces. T

14The same techniques can be applied to transform any given implicit function into a distance one.
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underlying idea is based on using the classical Cartesian fast marching algorithm ir
offset bound around the given surface. We have provided theoretical results justifying
approach and presented a number of experimental examples. The technique can al
applied to 3D triangulated surfaces, or even surfaces represented by clouds of unconn
points, after these have been embedded in a Cartesian grid with proper boundaries. We
also discussed that the approach is valid for more general Hamilton—Jacobi equatior
well.

Many questions remain open. Recently, T. Barth (and independently D. Chopp) h:
shown techniques to improve the order of accuracy of fast marching methods. It will be in
esting to see how the method proposed here can be extended to match such accuracy. R
tothis, we are currently working on tighter bounds for the error bet\déheanddg, aswellas
bounds for the error between their corresponding derivatives. We are interested in exten
the framework presented here to the computation of distance functions on high codimen
surfaces and general embeddings. More generally, it remains to be seen what class of it
sic Hamilton—Jacobi (or in general, what class of intrinsic PDES) can be approximated v
equations in the offset barfd,. In an even more general approach, what kind of intrinsic
equations can be approximated by equations in other domains, with offsets being ju
particular and important example. Even if fast marching techniques do not exist for th
equations, it might be simpler and even more accurate to solve the approximating equat
in these domains than in the original surfat& he framework here presented then not only
offers a solution to a fundamental problem, but also opens the doors to a new area of rese

APPENDIX A: DISTANCE MAPS IN EUCLIDEAN SPACE

We now present a few important results on distance maps. These have been m:
adapted (and adopted) from [4, 5, 26, 54].
Wherevery is smooth we know that it satisfies tkékonalequation

IVl = 1. (A1)

The distance function satisfies this PDE everywhere iwvigmosity sensi9, 20]. Itis also
well known that within a sufficiently small neighborhood®t {y = 0}, ¥ (-) is smooth

or at least as smooth & These assertions can be made precise through the followil
Lemma from [24]:

LEMMA A.1. LetS be a C* (k > 2) codimensiori closed hyper-surface of R Then
the signed distance function &is CX(U) for a certain neighborhood U aS.

Differentiating|| V|| = 1, we obtain
D(Vy)Vy = 0.
Therefore,
Hy Vi =0 (A.2)

meaning that the normal {8 at p is an eigenvector of the Hessian, associated to the nt
eigenvalue. Differentiating again we obtain

D3y Vy + (D?¥)* = 0. (A.3)
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The next Lemma, whose detailed proof can be found in [4], is mainly based in t
relations (A.2) and (A.3), and it is used to verify that the function (—e, ¢) — IR%*¢
defined byu(t) = Hy (po + tVy (po))(Po is any point in the manifoldyr = 0}) satisfies
the following ODE:

L) + 12t =0 te(—ee)

LEMMA A.2. The eigenvectors dfl, are constant along the characteristic linegsx =
Xo + sV (X(8)) (arc length parametrizedg is a point ontaS) of ¢ within any neighbor-
hood where it is smooffand the eigenvalues vary according to

Ai (0)

MO = o1

We use the above formula to bound the maximum offgetf { = 0} that keepgyr = ¢}
smooth, we just takg|(MmaX<i<d—1 |2 (0)]) < 1.
We now obtain bounds on the eigenvalues of the Hessian of the distance function:

CoROLLARYA.1. Theeigenvalues (p) of Hy (p) (principal curvatures ofx : ¥ (X) =
Y (p)}) are absolutely bounded by

Ms
AP S
M= Ty (M
whereM s absolutely bounds all eigenvaluesidf, (p), p € S; and|y (p)| is sufficiently
small.

To conclude, let's present some concepts on projections onto the implicit s§rfaeeo
level-set of the distance functiah. It is clear that the projection of a poipte IRY ontoS
is given by

s(p) = p =¥ (PVY(p).

This projection is well defined as long as there is only greeS such thaflls(p) = x.
This can be guaranteed when working within a small tubular neighborhood of a smo
surfaceS. Moreover, this map is smooth within a certain tubular neighborhodti[6#]:

THEOREMA.1. If S C IR%is a compact € (k > 2) codimensiori. hyper-surfacethen
thereis alS) > Osuch thatthe mapls is well defined and belongs td‘C ({x : d(x, S) <
h}, RY).

APPENDIX B: TECHNICAL LEMMA
LEMMA B.1. Let f:[a, b] = R be a C([a, b]) function such that fis Lipschitz. Let

¢ € L*°([a, b]) denote(one of) f”’s weak derivative. Then one has

b b b
/ f2(x)dx = ff/|a—/ f (X)p(X) dX
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Proof. Letext(f’) denote the Lipschitz extension 6f to all IR given by

f'(a) forx <a
ext(f)(x) =< f/(x) forx €[a,b]
f'(by forx>b
Then letextf) be given by any (bounded) primitive of €xft), thatis, extf) = [ ext(f’).
Let$ € L*IR denote extf’)’'s weak derivative, and we have that. 1, andy coincide as
weak derivatives off . Let {.(-)}(c-0y be a family of bounded support mollifiers. Then we
define the function

fo = ext(f) % n..

It is clear that we will haveZ means uniform convergence)

(a)
€l0
fe — ext(f) over compact sets dR
(b)
€l0
f/ —= ext(f’) over compact sets dR
(©)

£/ 2 4 locally in L2(R)

Since f/ € C*(IR), we can use integration by parts to conclude that

b b
/ f200dx = f/f|° —/ fo(x) f/(x)dx.
a a

Now the left-hand side will converge tﬁ; f2(x)dx in view of (b); the first term in
the right-hand side will obviously converge fd’|2. For the remaining term we observe
the following, using Cauchy—Schwartz inequality (let: L?([a, b]) x L?([a, b]) - IR
denotel ?([a, b])’s internal product):

b b

a a

= (', fo) — (o, D) = KT/, fe = £) + (f, 1/ — o)
<(b- a)(({xrerg%} | (x)|> I fe — fllizqan)

max | f(x ) f/— )
+ ((ma 110111 = ¢lagan)
Now, everything is under control since

max |f/(X)| < o )
{Xe[a’b]}l « | = llellLean)
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Hence, we have proved

b 0 b
/fé(x) f/(x)dx — / f (X)p(x) dx

the last step of the proof.m
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