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An algorithm for the computationally optimal construction of intrinsic weighted
distance functions on implicit hyper-surfaces is introduced in this paper. The basic
idea is to approximate the intrinsic weighted distance by the Euclidean weighted
distance computed in a band surrounding the implicit hyper-surface in the embedding
space, thereby performing all the computations in a Cartesian grid with classical
and efficient numerics. Based on work on geodesics on Riemannian manifolds with
boundaries, we bound the error between the two distance functions. We show that
this error is of the same order as the theoretical numerical error in computationally
optimal, Hamilton–Jacobi-based, algorithms for computing distance functions in
Cartesian grids. Therefore, we can use these algorithms, modified to deal with spaces
with boundaries, and obtain also for the case of intrinsic distance functions on implicit
hyper-surfaces a computationally efficient technique. The approach can be extended
to solve a more general class of Hamilton–Jacobi equations defined on the implicit
surface, following the same idea of approximating their solutions by the solutions in
the embedding Euclidean space. The framework here introduced thereby allows for
the computations to be performed on a Cartesian grid with computationally optimal
algorithms, in spite of the fact that the distance and Hamilton–Jacobi equations are
intrinsic to the implicit hyper-surface. c© 2001 Academic Press

Key Words:implicit hyper-surfaces; distance functions; geodesics; Hamilton–
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1. INTRODUCTION

Computing distance functions has many applications in numerous areas including math-
ematical physics, image processing, computer vision, robotics, computer graphics, com-
putational geometry, optimal control, and brain research. In addition, having the distance

730

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press
All rights of reproduction in any form reserved.



DISTANCE FUNCTIONS AND GEODESICS 731

function from a seed to a target point, it is straightforward to compute the corresponding
geodesic path, since this is given by the gradient direction of the distance function, back
propagating from the target toward the seed (see for example [18]). Geodesics are used for
example for path planning in robotics [35]; brain flattening and brain warping in compu-
tational neuroscience [56, 57, 60, 61, 68]; crests, valleys, and silhouettes computations in
computer graphics and brain research [7, 30, 62]; mesh generation [64]; and many applica-
tions in mathematical physics. Distance functions are also very important in optimal control
[59] and computational geometry for computations such as Voronoi diagrams and skeletons
[48]. It is then of extreme importance to develop efficient techniques for the accurate and fast
computations of distance functions. It is the goal of this paper to present a computationally
optimal technique for the computation of intrinsic weighted distance functions on implicit
hyper-surfaces.1 It is well known already, and it will be further detailed below, that these
weighted distances can be obtained as the solution of simple Hamilton–Jacobi equations.
We will also show that the framework here presented can be applied to a larger class of
Hamilton–Jacobi equations defined on implicit surfaces. We also discuss the application of
our proposed framework to other, nonimplicit, surface representations.

1.1. Distance Function Computation and Its Hamilton–Jacobi Formulation

Before proceeding, let us first formally define the concept ofintrinsic weighted distances
on implicit hyper-surfaces. LetS be a (codimension 1) hyper-surface inIRd defined as the
zero level set of a functionψ : IRd → IR. That is,S is given by{x ∈ IRd : ψ(x) = 0}.
We assume from now on thatψ is a signed distance function to the surfaceS. (This is
not a limitation, since as we will discuss later, both explicit and implicit representations
can be transformed into this form.) Our goal is, for a given pointp ∈ S, to compute the
intrinsic g-weighted distance functiondg

S(p, x) for all desired pointsx ∈ S.2 Note that we
are referring to the intrinsicg-distance, that is, the geodesic distance on the Riemannian
manifold (S, g2II ) (II stands for the(d − 1)× (d − 1) identity matrix) and not on the
embedding Euclidean space. For a given positive weightg defined on the surface (we are
considering only isotropic metrics for now), theg-distance onS (that coincides with the
geodesic distance of the Riemannian manifold(S, g2II )) is given by

dg
S(p, x)

1= inf
Cpx[S]
{L g(C)}, (1)

where

L g{C} 1=
∫ b

a
g(C(l ))‖Ċ(l )‖ dl (2)

is the weightedlength functionaldefined for piecewiseC1 curvesC : [a, b] → S, and
Cpx[S] denotes the set of curves piecewiseC1 joining p to x, traveling onS. In general,

1Although all the examples in this paper are going to be reported for two-dimensional surfaces in 3D (here
denoted as 3D surfaces), the theory is valid for general dimension hyper-surfaces, and it will be presented in this
generality. A number of applications deal with higher dimensions. For example, for the general theory of harmonic
maps, in order to deal with maps onto general open surfaces, it is necessary to have this notion of intrinsic distance
[41]. In addition, higher dimensions might appear in motion planning, when explicitly assuming that the robot is
not modeled by a point, thereby adding additional constraints to its movements.

2 This can certainly be extended to any subset ofS.
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we will consider the definition to be valid for anỹg defined over the domain that the curve
may travel through.

We need to compute this distance when all the concerning objects are represented in
discrete form in the computer. Computing minimal weighted distances and paths in graph
representations is an old problem that has been optimally solved by Dijkstra [21]. Dijkstra
showed an algorithm for computing the path inO(n logn)operations, wheren is the number
of nodes in the graph. The weights are given on the edges connecting between the graph
nodes, and the algorithm is computationally optimal. In theory, we could use this algorithm to
compute the weighted distance and corresponding path on polygonal (not implicit) surfaces,
with the vertices as the graph nodes and the edges the connections between them (see [33]).
The problem is that the optimal paths computed by this algorithm are limited to travel on
the graph edges, giving only a first approximation of the true distance. Moreover, Dijkstra’s
algorithm is not a consistent one: it will not converge to the true desired distance when the
graph and grid is refined [42, 43]. The solution to this problem, limited to Cartesian grids,
was developed in [27, 51, 52, 59] (and recently extended by Osher and Helmsen, see [45]).
Tsitsiklis [59] first described an optimal-control type of approach, while independently
Sethian [51, 52] and Helmsen [27] both developed techniques based on upwind numerical
schemes. The solution presented by these authors is consistent and converges to the true
distance [49, 59], while keeping the same optimal complexity ofO(n logn). Later this
work was extended in [32] for triangulated surfaces (see also [7, 36] for related works on
numerics on non-Cartesian grids). We should note that the algorithm developed in [32] is
currently developed only for triangulated surfaces with acute triangles. Therefore, before
the algorithm can be applied, as an initialization step the surfaces have to be preprocessed to
remove all obtuse triangles or other polygons present in the representation [31]. Following
[52], we call thesefast marching algorithms.

The basic idea behind the computationally optimal techniques for finding weighted dis-
tances, meaning these fast marching algorithms, is to note that the distance function satisfies
a Hamilton–Jacobi partial differential equation (PDE) in the viscosity sense; see, for ex-
ample, [38, 50] for the general topic of distance functions on Riemannian manifolds (and a
nice mathematical treatment), and [12, 23, 31, 44, 46, 52] for the planar (and more intuitive)
case. This Hamilton–Jacobi equation is given by

∥∥∇S dg
S
∥∥ = g, (3)

where∇S is the gradient intrinsic to the surface, anddg
S is theg-distance from a given seed

point to the rest of the manifold.3

That is, we can transform the problem of optimal distance computation into the problem
of solving a Hamilton–Jacobi equation (recall thatg is known, it is the given weight), also
known as the Eikonal equation. In order to solve this equation, the current state of knowledge
permits us to accurately and optimally (in a computational sense) find (weighted) distances
on Cartesian grids as well as on particular triangulated surfaces (after some preprocessing,
namely the elimination of obtuse triangles, see [6, 32]). The goal of this paper is to extend
this to implicit hyper-surfaces. In other words, we will show how to solve the above Eikonal
equation for implicit hyper-surfacesS.

3 Note that∇S anddg
S become the classical gradient and distance respectively for Euclidean spaces.
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Recall that although all the applications in this paper will be presented for 3D surfaces,
the theory is valid for anyd-dimensional hyper-surfaces, and will then be presented in this
generality.

1.2. Distance Function and Geodesics on Implicit Surfaces

The motivations behind extending the distance map calculation to implicit surfaces are
numerous: (a) In many applications, surfaces are already given in implicit form, e.g., [10,
13, 16, 25, 45, 46, 53, 66, 62], and there is then a need to extend to this important represen-
tation the previously mentioned fast techniques. We could of course triangulate the implicit
surface, eliminate obtuse triangles, and then use the important algorithm proposed in [32].
This is not a desirable process in general when the original data is in implicit form, since it
affects the distance computation accuracy because of errors from the triangulation, and also
adds the computational cost of the triangulation itself, triangulation that might not be needed
by the specific application. If, for example, what it is needed is to compute the distance
between a series of points on the surface, the computational cost added by the triangulation
is unnecessary. Note that finding a triangulated representation of the implicit surface is of
course dimensionality dependent, and adds the errors of the triangulation process. More-
over, accurate triangulations that ensure correctness in the topology are computationally
expensive, and once again there is no reason to perform a full triangulation when we might
be interested just in the intrinsic distance between a few points on the implicit surface. (b) It
is a general agreement that the work on implicit representations and Cartesian grids is more
robust when dealing with differential characteristics of the surface and partial differential
equations on this surface. Numerical analysis on Cartesian grids is much more studied and
supported by fundamental results than the work on polygonal surfaces. It is even recognized
that there is no consensus on how to compute basic differential quantities over a triangulated
surface (see, for example, [22]), although there is quite an agreement for implicit surfaces.
Moreover, representing an hyper-surface with structured elements such as triangles is cer-
tainly difficult for dimensions other than 2 or 3. (c) If the computation of the distance
function is just a part of a general algorithm for solving a given problem, it is not elegant,
accurate, nor computationally efficient to go back and forth from different representations of
the surface.

Before proceeding, we should note that although the whole framework and theory is
here developed for implicit surfaces, it is valid for other surface representations as well
after preprocessing. This will be explained and discussed later in the paper (Section 5).
Moreover, we will later assume that the embedding is a distance function. This is not a
limitation, since many algorithms exist to transform a generic embedding function into a
distance one; see also Section 5. Therefore, the framework here presented can be applied
both to implicit (naturally) and other surface representations such as triangulated ones.

In order to compute intrinsic distances on surfaces, a small but important number of
techniques have been reported in the literature. As mentioned before, in a very interesting
work Kimmel and Sethian [32] extended the fast marching algorithm to work on triangu-
lated surfaces. In its current version, this approach can only be used when dealing with 3D
triangulated surfaces and its extension to deal with higher dimensions seems very involved.
Moreover, it can only correctly handle acute triangulations (thereby requiring a preprocess-
ing step). And of course, it doesn’t apply to implicit surfaces without some preprocessing
(a triangulation).
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Another very interesting approach to computing intrinsic distances, this time working
with implicit surfaces, was introduced in [16]. This will be further described below, but first
let’s make some comments on it. First, this is an evolutionary/iterative approach, whose
steady state gives the solution to the corresponding Hamilton–Jacobi equation. Therefore,
this approach is not computationally optimal for the class of Hamilton–Jacobi equations
discussed in this paper. (Although when properly implemented, the computational complex-
ity of this iterative scheme is the same as in the fast marching method here proposed, the
inner loop is more complex, making the iterative algorithm slower.)4 Second, very careful
discretization must be done to the equation proposed in [16] because of the presence of
intrinsic jump functions that might change the zero level-set (i.e., the surface). On the other
hand, the numerical implementation is not necessarily done via the utilization ofmonotone
schemes, as required by our approach and all the fast marching techniques previously men-
tioned (thereby having a theoretical error2(

√
1x) [19]), and better accuracy might then

be obtained.
In order to compute the intrinsic distance on an implicit surface, we must then solve

the corresponding Hamilton–Jacobi equation presented before. In order to do this in a
computationally efficient way, we need to extend the fast marching ideas in [27, 45, 51,
52, 59], which assume a Cartesian grid, to work in our case. Since an implicit surface
is represented in a Cartesian grid, corresponding to the embedding function, the first and
most intuitive idea is then to attempt to solve theintrinsic Eikonal equationusing thefast
marchingtechnique. The first step toward our goal is to express all the quantities in the
intrinsic Eikonal equation by itsimplicit-extendedrepresentations. What we mean is that
the intrinsic problem (we considerg = 1 for simplicity of exposition),{

‖∇S dS(x)‖ = 1 for p∈S
dS(p) = 0,

(4)

with p ∈ S the seed point, is to be extended to allIRd (or at least to a band surroundingS),
and the derivatives are to be taken tangentially to{ψ = 0}. Considering then the projection
of the Euclidean gradient onto the tangent space ofS to obtain the intrinsic one, and denoting
by d̂ the Euclidean extension to the intrinsic distancedS , we have to numerically solve, in
the embedding Cartesian grid, the equation{‖∇d̂(x)‖2− |∇d̂(x) · ∇ψ(x)|2 = 1 for x ∈ IRd

d̂(l (p)) = 0,
(5)

wherel (p) is the ray throughp normal to the level sets ofψ .
This is exactly the approach introduced in [16], as discussed above, to build-up the

evolutionary approach, given by the PDE

φt + sgn(φ0)(
√
‖∇φ‖2− |∇φ · ∇ψ |2− 1) = 0, (6)

whereφ0(x) = φ(x, 0) is the initial value of the evolving function, generally a step-like

4 The general framework introduced in [16] is applicable beyond the Hamilton–Jacobi equations discussed in
this paper (see also [8, 17]). Here we limit the comparison between the techniques to the equations where both
approaches are applicable.
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function (convolved with the signum) that tells inside from outside of the zero level-set.
One then findŝd(·) = φ(·,∞).

Of course, in order to obtain a computationally optimal approach, we want to solve
the stationary problem (5), and not its iterative counterpart (6). It turns out that the basic
requirements for the construction of a fast marching method, even with the recent extensions
in [45], do not hold for this equation. This can be explicitly shown, and has also been
hinted by Kimmel and Sethian in their work on geodesics on surfaces given as graphs of
functions.5

To recap, the fast marching approach cannot be directly applied to the computation
of intrinsic distances on implicit surfaces defined on a Cartesian grid (Eq. (5)), and the
state of the art in numerical analysis for this problem says that in order to compute in-
trinsic distances one either has to work with triangulated surfaces or has to use the iter-
ative approach mentioned above. The problems with both techniques were reported be-
fore, and it is the goal of this paper to present a third approach that addresses all these
problems.

1.3. Our Contribution

The basic idea here presented is conceptually very simple. We first consider a smallh
offset ofS. That is, since the embedding functionψ is a distance function, withS as its
zero level set, we consider all pointsx in IR3 for which |ψ(x)| ≤ h. This gives a region in
IRd with boundaries. We then modify the (Cartesian) fast marching algorithm mentioned
above for computing the distance transform inside thish-band surroundingS. Note that
here all the computations are, as in the works in [27, 51, 52, 59], in a Cartesian grid. We
then use this Euclidean distance function as an approximation of the intrinsic distance
on S. In Section 2 we show that the error between these two distances, under reasonable
assumptions on the surfaceS, is of the same order as the numerical error introduced by
the fast marching algorithms in [27, 51, 52, 59].6 Therefore, when adapting these algo-
rithms to work on Euclidean spaces with boundary adaptation described in Section 3, we
obtain an algorithm for the computation of intrinsic distances on implicit surfaces with
the same simplicity, computational complexity, and accuracy as the optimal fast marching
techniques for computing Euclidean distances on Cartesian grids.7 In Section 3 we also ex-
plicitly discuss the numerical error of our proposed technique. Examples of the algorithm
here proposed are given in Section 4. Since Osher and Helmsen have recently shown that
the fast marching algorithm can be used to solve additional Hamilton–Jacobi equations,
we show that the framework here proposed can be applied to equations from that class
as well; this is done in Section 5. This section also discusses the use of the framework
here presented for nonimplicit surfaces. Finally, some concluding remarks are given in
Section 6.

5 We have also benefited from private conversations with Stan Osher and Ron Kimmel to confirm this claim.
6 In contrast with works such as [1, 47], where an offset of this form is just used to improve the complexity

of the level-sets method, in our case the offset is needed to obtain a small error between the computed distance
transform and the real intrinsic distance function; see next section.

7 Although in this paper we deal with the fast marching techniques, other techniques for computing distance
functions on Cartesian grids, e.g., the fast technique reported in [11] for uniform weights, could be used as well,
since the basis of our approach is the approximation of the intrinsic distance by an extrinsic one.
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2. DISTANCE FUNCTIONS: INTRINSIC VS. EXTRINSIC

The goal of this section is to present the connection between the intrinsic distance function
and the Euclidean function computed inside a band surrounding the (implicit) surface. We
will completely characterize the difference between these two functions, mainly based on
results on shortest paths on manifolds with boundary. The results here presented will also
justify the use of the Cartesian fast marching algorithms for the computation of intrinsic
weighted distances on implicit surfaces.

Recall that we are dealing with a closed hyper-surfaceS in IRd represented as the zero
level-set of a distance functionψ : IRd→ IR. That is,S = {ψ = 0}. Our goal is to compute
a g-weighted distance map on this surface from a seed pointq ∈ S.

Let

Äh
4=
⋃
x∈S

B(x, h) = {x ∈ IRd : |ψ(x)| ≤ h}

be theh-offsetof S (hereB(x, h) is the ball centered atx with radiush). It is well known
that for a smoothS, ∂Äh is also smooth ifh is sufficiently small, see Appendix A for
references.Äh is then amanifold with smooth boundary.

Our computational approach is based on approximating the solution of theintrinsic
problem (dg

S(p) is the intrinsicg-weighted distance onS){∥∥∇S dg
S(p)

∥∥ = g for p∈S
dg
S(q) = 0.

(7)

by that of theEuclidean(or extrinsic) one,{∥∥∇dg̃
Äh
(p)
∥∥ = g̃ for p∈Äh

dg̃
Äh
(q) = 0,

(8)

whereg̃ is a smoothextensionof g in a domain containingÄh, anddg̃
Äh
(p) is the Euclidean

g̃-weighted distance inÄh. Our goal is to be able to control, for points onS,‖dg
S − dg̃

Äh
‖L∞(S)

with h. Note that we have replaced the intrinsic gradient∇S by the Euclidean gradient and
the intrinsic distancedg

S(p) on the surface by the Euclidean distancedg̃
Äh
(p) in Äh. We

have then transformed the problem of computing an intrinsic distance into the problem of
computing a distance in an Euclidean manifold with boundary.

We will show that under suitable (and likely) geometric conditions onS we can indeed
control‖dg

S − dg̃
Äh
‖L∞(S) with h. In order to materialize this, we first need to briefly discuss

the extensioñg and to review some basic background material on Riemannian manifolds
with boundary.

2.1. The Extension of the Weightg

We require thatg̃|S = g, and thatg̃ is smoothand nonnegative withinÄh. There are
situations when one has a readily available extension, and others in which the extension
has to be “invented.” We call the formernatural extensionand the lattergeneral extension.
Both cases, as argued below, will provide smooth functionsg̃.
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In many applications, the weightg : S→ IR depends on the curvature structure of the
hyper-surface. DenotingBS(·) :S→ s IRd×d the second fundamental form ofS, and
3(BS(x)) the set of its eigenvalues, this means that

g(x) = F(3 (BS(x)) ,

whereF is a given function. In this case it is utterlynaturalto take advantage of the implicit
representation by noting thatBS(x) = Hψ |TxS

(x) for x ∈ S, whereHψ is the Hessian ofψ
andTxS is the tangent space toS at x (see [37]). Thenaturalextension then becomes

g̃(x) = F
(
3
(
Hψ |TxS(x)

(x)
))
, x ∈ Äh, (9)

whereS(x) 1= {y ∈ IRd :ψ(y) = ψ(x)}.
This extension is valid for{x ∈ IRd : |ψ(x)| < 1/MS}, whereMS absolutely bounds all

principal curvatures ofS; see Appendix A.
When the weightg cannot be directly extended to be valid for a tubular neighborhood of

the hyper-surface, one has to do that in a pedestrian way. One such extension comes from
propagating the values ofg along the normals ofS in a constant fashion; i.e.,

g̃(x) = g(5S(x)), x ∈ Äh, (10)

where5S(·) : IRd → S stands for the normal projection ontoS. This extension is well
defined and smooth as long as there is a uniquefoot in S for every x in the domain of
the desired extensionÄ. Takingh sufficiently small we can guarantee thatÄ⊃Äh if S is
smooth. See Appendix A for some details.

In practice, this extension can be accomplished solving the equation [14]

φt + sgn(ψ)∇ψ · ∇φ = 0

with initial conditions given by anyφ(·, 0), such thatφ(·, 0)|S = g. Theng̃(·) 1= φ(·,∞).

2.2. Shortest Paths and Distance Functions in Manifolds with Boundary

Since we want to approximate the problem of intrinsic distance functions by a problem
of distance functions in manifolds with boundary, and to prove that the latter converges
to the former, we need to review basic concepts on this subject. We will mainly include
results from [2, 3, 63]. We are interested in the existence and smoothness of the geodesic
curves on manifolds with boundary, since our convergence arguments below depend on
these properties. We will assume throughout this section that(M,m) is aconnectedand
completeRiemannian manifold with boundary (this will later become theh-offsetÄh with
the metricg̃2II , whereII now stands for thed × d identity matrix).

DEFINITION 2.1 Letp,q ∈M, then ifdM(·, ·) :M×M→ IR is the distance function
inM (with its metricm), a shortest path betweenp andq is a path joining them such that
its Riemannian length equalsdM(p,q).

Now, sinceM is complete, for every pair of pointsp andq there exists ashortest path
joining them; see [2]. The following results deal with the regularity of this shortest path.



738 MÉMOLI AND SAPIRO

FIG. 1. The minimal path isC1, but notC2.

THEOREM 2.1 Let (M,m) be a C3 manifold with C1 boundary B. Then any shortest
path ofM is C1.

When(M,m) is a flat manifold (i.e.,M is a codimension 0 subset ofIRd and the metric
m is isotropic and constant), it is easy to see that anyshortest pathmust be a straight line
whenever it is in the interior ofM, and a shortest path of the boundaryB when it is there.
This will be the situation for us from now on.

It might seem a bit awkward that one cannot achieve a higher regularity class thanC1 for
the shortest paths, even by increasing the regularity ofM ∪ B, but a simple counterexample
will convince the reader. Think ofM as IR2 with the open unit disc removed (see Fig. 1),
and its Euclidean metric. The acceleration in all the open segment(AP) is E0, and in all the
open arc(P Q) is −Eer ; that is, it points inward and has modulus 1. That is, even in most
simple examples,C2 regularity is not achievable. It is, however, very easy to check that in
this casėγ is actuallyLipschitz.

For the general situation, in [3, 39] the authors proved that shortest paths do haveLipschitz
continuousfirst derivatives, which means that in fact shortest paths are twice differentiable
almost everywhereby Rademacher’s Theorem. This fact will be of great importance below.

For a more comprehensive understanding of the theory of shortest paths and distance
functions in Riemannian manifolds with boundary, see [2, 3, 39, 63] and references therein.

2.3. Convergence Result for the Extrinsic Distance Function

We now show the relation between the Euclidean distance in the bandÄh and the intrinsic
distance in the surfaceS. Below we will denotedS

1= d1
S , anddÄh

1= d1
Äh

.

Observation 2.1. Since we assume the implicit surfaceS to be compact, the continuous
functiondS : S × S→ IR attains its maximum. Therefore, we can define the diameter of
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the set as

diam(S) 1= sup
p,q∈S

dS(p,q)<∞.

Observation 2.2. SinceS ⊂ Äh we have that for every pair of pointsp andq in S,
dÄh(p,q) ≤ dS(p,q), so in view of the previous observation we have

dÄh(p,q) ≤ diam(S) ∀p,q∈S.

Observation 2.3. Since we are assuming̃g to be a smooth extension ofg to allÄ ⊃ Äh

(we stress the fact that the extension does not depend on h),g̃ will be Lipschitz inÄ,
and we callKg̃ its associated constant. Further, we will denoteMg

1= max{x∈S} g(x) and
Mg̃

1= sup{x∈Ä} g̃(x).

We need the followingLemmawhose simple proof we omit (see, for example, [18]).

LEMMA 2.1. When ag̃-shortest path travels through an interior region, its curvature is
absolutely bounded by

Bg̃
1= sup
{x∈Ä}

(‖∇ g̃(x)‖
g̃(x)

)
.

The following Lemma will be needed in the proof of the theorem below. Its proof can be
found in Appendix B.

LEMMA 2.2. Let f : [a, b] → IR be a C1([a, b]) function such that f′ is Lipschitz. Let
ϕ ∈ L∞([a, b]) denote(one of) f ′’s weak derivative(s). Then∫ b

a
f ′2(x) dx = f f ′

∣∣b
a −

∫ b

a
f (x)ϕ(x) dx.

We are now ready to present one of the main results of this section. We bound the
error between the intrinsic distance onS and the Euclidean one in the offsetÄh. As we
will see below, in the most general case, the error is of the orderh1/2 (h being half the
offset width). We will later discuss that this is also the order of the theoretical error for
the numerical approximation in fast marching methods. That will lead us to conclude that
our algorithm does keep the convergence rate within the theoretically proven order for fast
marching methods’ numerical approximation. However, for all practical purposes, the order
of convergence in the numerical schemes used by fast marching methods is that ofh; see
[49]. We will also argue that for all practical purposes we can guarantee no decay in the
overall rate of convergence. We defer the detailed discussion on this to after the presentation
of the general bound below.

THEOREM 2.2. Let A and B be two points on the smooth hyper-surfaceS (see Fig.2).
Let dg̃

h = dg̃
Äh
(A, B) and dg

S = dg
S(A, B). Then, for points on the surfaceS, we have that

for sufficiently small h ∣∣dg
S − dg̃

h

∣∣ ≤ h
1
2 C(h) diam(S),

where C(h) depends on the global curvature structure ofS and ong̃, and approaches a
constant when h↓ 0 (it does not depend on A nor B, we give a precise form of C(h) in the
proof).
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FIG. 2. Tubular neighborhood.

Proof. Letdh = dÄh (A, B); dS = dS (A, B); and letγ : [0, dh] denote aÄh g̃-distance
minimizing arc-length parameterized path betweenA = γ (0) and B = γ (dh), such that
‖γ̇ ‖ = 1. Let δ = 5ψ(γ ) = γ − ψ(γ )∇ψ(γ ) be the orthogonal projection ofγ ontoS.
This curve will be as smooth asγ for small enoughh; see Appendix A. For sufficiently
small h, the boundary ofÄh will be smooth, sinceS is smooth and no shocks will be
generated (see next section and Appendix A). So we can assume thatγ is C1 and thatγ̇ is
Lipschitz, since it is a shortest path within a smooth Riemannian manifold with boundary;
see Section 2.2 above.

It is evident that (this is a simple but key observation)

L g̃{γ } = dg̃
h

(1)≤ dg
S
(2)≤ L g{δ},

since

(1) S ⊂ Äh andg̃|S = g
(2) δ need not be ag-shortest path betweenA andB onS.

We then have∣∣dg
S − dg̃

h

∣∣ ≤ |L g{δ} − L g̃{γ }| = |L g̃{δ} − L g̃{γ }|

≤
∫ dh

0
|g̃(δ)‖δ̇‖ − g̃(γ )‖γ̇ ‖| dt

≤
∫ dh

0
|g̃(δ)‖δ̇‖ − g̃(δ)‖γ̇ ‖| dt +

∫ dh

0
|g̃(δ)‖γ̇ ‖ − g̃(γ )‖γ̇ ‖| dt

=
∫ dh

0
g(δ)|‖δ̇‖ − ‖γ̇ ‖| dt +

∫ dh

0
|g̃(δ)− g̃(γ )| dt

≤ Mg

∫ dh

0
‖γ̇ − δ̇‖ dt + Kg̃

∫ dh

0
‖γ − δ‖ dt

= Mg

∫ dh

0
‖∇ψ(γ ) · γ̇∇ψ(γ )+ψ(γ )Hψ(γ )γ̇ ‖ dt+Kg̃

∫ dh

0
‖ψ(γ )∇ψ(γ )‖ dt

≤ Mg

∫ dh

0
|∇ψ(γ ) · γ̇ | dt + h Mg

∫ dh

0
‖Hψ(γ )γ̇ ‖ dt + Kg̃h dh.

We now bound the first two terms at the end of the preceding expression.
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1. We first bound the second term in the preceding expression; this will be an ingredient
to the bounding of the first term as well. We have

‖Hψ(γ )γ̇ ‖ ≤ sup
{v:‖v‖=1;p:d(p,S)≤h}

‖Hψ(p)v‖ = sup
{p:d(p,S)≤h}

max(|λ(p)|, |µ(p)|) ,

whereλ(p) andµ(p) denote the largest and the smallest eigenvalue ofHψ(p), respectively.
Now, as we know from Appendix A, the maximum absolute eigenvalue ofHψ(p), K (p),
is bounded by

K (p) ≤ MS
1− |ψ(p)|MS

,

whereMS is the maximum absolute eigenvalue ofHψ |S ; that is,

MS = sup
{x∈S}

max
{1≤i≤d}

|λi (Hψ(x))|,

whereλi (·) stands for thei -th eigenvalue of a symmetric matrix.
Then ∫ dh

0
‖Hψ(γ (s))γ̇ (s)‖ds≤ dh

MS
1− hMS

.

2. Let us define the functionf : [0, dh] → IR, f (t) = ψ(γ (t)). Then formally ḟ (t) =
∇ψ(γ (t)) · γ̇ (t) and f̈ (t) = Hψ(γ (t))[γ̇ (t), γ̇ (t)] +∇ψ(γ (t)) · γ̈ (t). Since γ̇ (·) is
Lipschitz, andψ is regular we can guarantee thatḟ (·) is also Lipschitz, sof̈ (·) exists
almost everywhere. We want to bound∫ dh

0
| ḟ (t)| dt.

We note first thatf (0) = f (dh) = 0, and | f (t)| ≤ h, | f̈ (t)| ≤ MS
1−hMS

+ Bg̃ for almost
everyt ∈ [0, dh]. In fact, we have that for those subintervals of [0, dh] in which the shortest
path travels through∂Äh, either f (t) = h, or f (t) = −h for the whole subinterval, and
thereforef (t) is constant for each subinterval, sof̈ (t) = 0 there. On the other hand, when
γ is in the interior ofÄh, it is a g̃-geodesic, so its acceleration is bounded byBg̃, as we
have seen in Lemma 2.1. Therefore, we conclude that| f̈ (t)| ≤ |Hψ(γ (t))[γ̇ (t), γ̇ (t)]| + Bg̃.
Combining all this we have that for almost everyt ∈ [0, dh],

| f̈ (t)| − Bg̃ ≤ sup
{v:‖v‖=1;d(p,S)≤h}

|Hψ(p)[v, v]| ≤ sup
{p:d(p,S)≤h}

max(|λ(p)|, |µ(p)|)

and the given bound follows as before.

Applying Cauchy–Schwartz inequality we obtain

∫ dh

0
| ḟ (t)| dt ≤

√
(dh)

∫ dh

0
ḟ 2(t) dt.
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Now using Lemma 2.2:∫ dh

0
ḟ 2(t) dt = ḟ f |dh

0 −
∫ dh

0
f f̈ dt = −

∫ dh

0
f f̈ dt

≤
∫ dh

0
| f || f̈ | dt ≤ (dh)h

( MS
1− hMS

+ Bg̃

)
.

Finally,

∫ dh

0
|∇ψ(γ ) · γ̇ | dt ≤ (dh)

√
h

( MS
1− hMS

+ Bg̃

)
.

Using both computed bounds, we find that

∣∣dg
S − dg̃

h

∣∣ ≤ diam(S)
√

h

[
Mg

√
MS

1− hMS
+ Bg̃ + Mg

√
h
MS

1− hMS
+ Kg̃

√
h

]
. j

(11)

From the preceding Lemma we obtain:

COROLLARY 2.1 For a given point q∈ S∥∥dg̃
Äh

∣∣
S(q, ·)− dg

S(q, ·)
∥∥

L∞(S)
h↓0−→ 0.

Remark. The rate of convergence obtained with the techniques shown above is of order√
h. A quick look over the proof of convergence shows that the term responsible for theh1/2

rate is
∫ dh

0 | ḟ (t) dt. All other terms have the higher order ofh. Suppose we can find afinite
collection of (disjoint) intervalsIi = (ai , bi ) such thatsgn( ḟ ) is constant (f is monotonic)
within eachIi , ∪N

i=1Ii ⊆ [0, dh], whereN is the cardinality of that collection of intervals,
and ḟ (t) = 0 for t ∈ [0, dh]

∖ ∪N
i=1 Ii . Then, we could write

∫ dh

0
| ḟ (t)| dt =

N∑
i=1

sgn( ḟ )|(ai ,bi )

∫ bi

ai

ḟ (t) dt=
N∑

i=1

sgn( ḟ )|(ai ,bi ) ( f (bi )− f (ai ))

=
N∑

i=1

| f (bi )− f (ai )| ≤
N∑

i=1

(| f (bi )| + | f (ai )|)

≤ 2Nh since f (t) = ψ(γ (t)) andγ (·) travels throughÄh,

obtaining a higher rate of convergence,h. It is quite convincing that cases whereN = ∞
can be considered pathological. We then argue that for all practical purposes the rate of
convergence achieved is indeedh (at least). Moreover, for simple cases like a sphere (or
other convex surfaces), it it very easy to show explicitly that the error is (at least) of orderh.8

Notwithstanding, we are currently studying the space of surfaces and metricsg for which
we can guarantee thatN <∞, and advances in this subject will be reported elsewhere.

8 In this case, as in the case of convex surfaces, the geodesic is composed of two straight lines inside the band,
tangent to its inner boundary, and a geodesic on the inner boundary of the band; see Fig. 1.
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This shows that we can approximate the intrinsic distance with the Euclidean one on the
offset bandÄh. Moreover, as we will detail below, the approximation error is of the same
order as the theoretical numerical error in fast marching algorithms. Thereby, we can use
fast algorithms in Cartesian grids to compute intrinsic distances (on implicit/implicitized
surfaces), enjoying their computational complexity without affecting the convergence rate
given by the underlying numerical approximation scheme.

3. NUMERICAL IMPLEMENTATION AND ITS THEORETICAL ERROR

In this section we first discuss the simple modification that needs to be incorporated
into the (Cartesian) fast marching algorithm in order to deal with Euclidean spaces with
manifolds with boundary. We then propose a way of estimating the (now discrete) offset
h, and bound the total numerical error of our algorithm, thereby showing our assertion that
the error with our algorithm is of the same order as the one obtained with the fast marching
algorithm for Cartesian grids (or triangulated 3D surfaces).

As stated before, we are dealing with the numerical implementation of the Eikonal
equation inside an open, bounded, and connected domainÄ (this will later become the
offsetÄh). The general equation, whenP(x) is the weight (it becomes̃g for our particular
case), is given by {

‖∇ f (x)‖ = P(x) ∀x ∈ Ä
f (r ) = 0,

(12)

with r the seed point. Note that following the results in the previous section, we are now
dealing with the Eikonal equation in Euclidean space, and so the Euclidean gradient is used
above.

The upwind numerical scheme to be used for this equation is of the form(1x1 = 1x2 =
· · · = 1xd = 1x) [49],{∑d

j=1 max2( f̂ (p)−mj , 0) = (1x)2P2(p)

mj = min( f̂ (p+1xEej ), f̂ (p−1xEej )),
(13)

where f̂ is the numerically computed value off for every pointp in the discrete domain

D(Ä,1x)
1= Ä ∩ (Z1x).

Here,Eej with j = 1, 2, . . . ,d, are the elements of the canonical basis ofIRd.
We now describe the fast marching algorithm for solving the above equation. For this

we follow the presentation in [52]. For clarity we write down the algorithm inpseudo-code
form. Details on the original fast marching method on Cartesian grids can be found in the
mentioned references.

At all times there are three kinds of points under consideration:

• NarrowBand. These points have to them associated an already guessed value forf̂ ,
and are immediate neighbors to those points whose value has already been “frozen.”
• Alive. These are the points whosêf value has already been frozen.
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• Far Away. These are points that haven’t been processed yet, so no tentative value
has been associated to them. For that reason, they havef̂ = ∞, forcing them not to be
considered as part of the up-winding stencil in the Gudunov’s Hamiltonian.
The steps of the algorithm include the following
• Initialization:

1. Set f̂ = 0 for every point belonging to the set [Alive]. These are the seed point(s)
if they lie on the grid. If the seed is not a grid point, its correspondingNeighbors9 are
setAlive and are given an initial valuêf simply computed via interpolation (taking into
account the distance from the neighbor grid points to the seed point).

2. Find a tentative value of̂f for every Neighbor of an Alive point and tag each
NarrowBand.

3. Set f̂ = ∞ for all the remaining points in the discrete domain.
• Advance:

1. Beginning of loop: Let(pmin) be the point∈ [NarrowBand], which takes the least
value of f̂ .

2. Insert the pointpmin to the set [Alive] and remove it from [NarrowBand].
3. Tag asNeighbors all those points in the discrete domain that can be written in

the form pmin±1xEej , and belong to [NarrowBand] ∪ [FarAway]. If a Neighbor is in
[FarAway], remove it from that set ([FarAway]) and insert it to [NarrowBand].

4. Recalculatef̂ for all Neighborsusing Eq. (13)
5. Set [Neighbor] = empty set.
6. Back to the beginning (step 1).

The boundary conditions are taken such that points beyond the discrete domain have
f̂ = ∞.

The condition that is checked all the time, and that really defines the domain the algorithm
is working within, is the one that determines if a certain pointq is Neighbor of a given
point p that belongs to the domain. The only thing one has to do in order to make the
algorithm work in the domainÄh specified by{x ∈ IRd : |ψ(x)| ≤ h} is change the way
theNeighbor checking is done. More precisely, we should check

q ∈ Neighbor(p) iff {(|ψ(q)| ≤ h)&& (q can be written likep±1xEej )},

the emphasis here being on the test “|ψ(q)| ≤ h.” We could also achieve the same effect by
giving an infinite weight to all points outsideÄh; that is, we treat the outside ofÄh as an
obstacle. Therefore, with an extremely simple modification to the fast marching algorithm,
we make it work as well for distances on manifolds with boundary, and therefore, for
intrinsic distances on implicit surfaces. This is of course supported by the convergence
results in the previous section and the analysis on the numerical error presented below.

3.1. Bounding the Offseth

We now present a technique to estimateh, the size of the offset of the hyper-surfaceS that
actually defines the computational domainÄh. The bounds onh are very simple. On one
hand, we needh to be large enough so that the upwind scheme can be implemented, meaning
thath has to be large enough to include the stencil used in the numerical implementation.

9 For a grid pointp, any of its 2D-neighboring points can be written likep±1xi Eei .
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FIG. 3. We depict the situation that leads to the lower bound forh in the 2D case. In red: the curve. In black:
the centers of̄B(x ∈ S, d1/21x). In green: the points ofD(Äh,1x) that fall insideB̄(x, d1/21x) for somex ∈ S,
and in blue those that don’t.

On the other hand,h has to be small enough to guarantee thatÄh remains simply connected
with smooth boundaries and thatg̃ remains smooth insideÄh.

LetMS be as before a bound for the absolute sectional curvature ofS, and let1x be
the grid size. In addition, letW be the maximal offsetting of the surfaceS that guarantees
that the resulting set remains connected and different parts of the boundary of that set do
not touch each other. We show below that a suitable bounding ofh is (recall thatd is the
dimension of the space),

1x
√

d < h < min

{
1

MS
,W

}
. (14)

Let us introduce some additional notation. We denote bycell the unit cell of the computa-
tional grid. Letx be a point inÄh; we denote byn(x) the number of cellsC1(x), . . . ,Cn(x)(x)
that containx. It is clear that ifx ∈ D(Äh,1x) (it is a grid point), thenx is contained in 2d

cells havingx as a vertex. It is also clear thatn(x) ≤ 2d. For a given cellC we callP(C)
the set of points ofD(Äh,1x) that composeC (i.e., its vertices). We will denote byC(x)
the set

⋃n(x)
i=1 Ci (x), and byP(x) the set

⋃n(x)
i=1 P(Ci (x)).

The lower bound comes from forcing that, for everyx ∈ S, all points inC(x) lie within
Äh (note of course that we wanth to be as small as possible); see Fig. 3. That is,⋃

x∈S
C(x) ⊂ Äh.

Once again, this constraint comes in order to guarantee that there are “enough” points to
make the discrete calculations. We try to makeC(x) ⊂ C̄(x, l ), whereC(x, l ) stands for the
hypercube centered inx, with side length 2l , and sides parallel to the gridding directions.
The worst scenario is whenx is a point in the discrete domain, and we must havel ≥ 1x.
Finally, we observe thatC(x, l ) ⊂ B(x, l

√
d). The condition then becomes⋃

x∈S
B(x,1x

√
d) ⊂ Äh =

⋃
x∈S

B(x, h),

which provides the lower bound,h > 1x
√

d.
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The upper bound includes two parts. First, we shouldn’t go beyondW, since if we do,
different parts of the offset surface might touch each other, a situation that can even create
a nonsimply connected bandÄh. The second part of the upper bound comes from seeking
that when traveling on a characteristic line ofψ at a pointp of S, no shocks occur inside
Äh. It is a simple fact that this won’t happen ifh < 1

MS
; see Appendix A. It is extremely

important to guarantee this both to obtain smooth boundaries forÄh and to obtain smooth
extensions of the metricg (g̃).

Note of course that in general,h and also1x can be position dependent. We can use an
adaptive grid, and in places where the curvature ofS is high, or places where high accuracy
is desired, we can make1x small.

3.2. The Numerical Error

It is time now to explicitly bound the numerical error of our proposed method. As stated
above, it is our goal to formally show that we are within the same order as the computationally
optimal (fast marching) algorithms for computing distance functions on Cartesian grids.
Note that the numerical error for the fast marching algorithm on triangulated surfaces has
not been reported, although it is of course bounded by the Cartesian one (since this provides
a particular “triangulation”).

3.2.1. Numerical Error Bound of the Cartesian Fast Marching Algorithm

The aim of this section is to bound a quantity that measures the difference between the
numerically computed valuêdg

S(p, ·) and the real valuedg
S(p, ·). Any such quantity will

compare both functions onS, but in principle the numerically computed value will not be
defined all over the hyper-surface. So we will be dealing with an interpolation stage, that
we comment further below in Section 3.2.2.

Let us fix a pointp ∈ S, and let f̂ (·) be the numerically computed solution (according
to (13)), andf (·) thereal viscosity solution of the problem (12). The approximation error
is then bounded by (see [49])

max
p∈D(Ä,1x)

| f̂ (p)− f (p)| ≤ CL(1x)
1
2 , (15)

whereCL is a constant. In practice, however, the authors of [49] observed first-order accu-
racy. As we have seen, we also find an error of orderh1/2 for the general approximation of
the weighted intrinsic distance onS with the distance in the bandÄh, and a practical order
of h (see Remark and Theorem 2.2).

Before proceeding with the presentation of the whole numerical error of our proposed
algorithm, we need the following simple lemma whose proof we omit.

LEMMA 3.1. For a convex set D⊂ Ä, and y, z ∈ D, f satisfies

| f (z)− f (y)| ≤ ‖P‖L∞(Ä)‖z− y‖.
Remark. Using the preceding Lemma and (15), it is easy to see that forx such that

C(x) ⊂ Ä,

| f̂ (p)− f̂ (q)| ≤ 2CL(1x)
1
2 + ‖P‖L∞(Ä)

√
d1x, ∀p,q ∈ P(x) (16)

a relation we will shortly use.
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3.2.2. The Interpolation Error

Since following our approach we are now computing the distance function in the band
Äh, in the corresponding discrete Cartesian grid, we have to interpolate this to obtain the
distance on the zero level-setS. This interpolation produces a numerical error which we
now proceed to bound.

Given the functionζ : D(Ä,1x)→ IR (Ä being a generic domain, which becomes the
bandÄh for our particular case), we define the functionI(ζ ) : Ä→ IR through an interpola-
tion scheme. We will assume that the interpolation error is bounded in the following way:10

sup
y∈P(x)

|ζ(y)− I(ζ )(x)| ≤ max
z∈P(x)

ζ(z)− min
z∈P(x)

ζ(z)

for everyx ∈ Ä.

3.2.3. The Total Error

We now present the complete error (numerical plus interpolation) introduced by our
algorithm, without considering the possible error in the computation ofg̃ (or in other
words, we assume that the weight was already given in the whole bandÄh).

Let p be a point inS. We denote by

• dg
S(p, ·) : S → IR the intrinsic g-distance function fromp to any point inS.

• dg̃
h (p, ·) : Äh → IR the g̃-distance function fromp to any other point inÄh.

• d̂g̃
h (p, ·) : D(Äh,1x)→ IR thenumerically computedvalue ofdg̃

h (p, ·) to any point
in the discrete domain.

• I(d̂g̃
h )(p, ·) : S → IR the result of interpolatinĝdg̃

h (that’s only specified for points in
D(Äh,1x)) to points inIRd ⊃ S.

The goal is then to bound‖dg
S(p, ·)− I(d̂g̃

h )(p, ·)‖L∞(S), and we proceed to do so now.
Let x be inS andy in P(x), then

∣∣dg
S(p, x)− I(d̂g̃

h

)
(p, x)

∣∣ ≤ ∣∣dg
S(p, x)− dg̃

h (p, x)
∣∣+ ∣∣dg̃

h (p, x)− dg̃
h (p, y)

∣∣
+ ∣∣dg̃

h (p, y)− d̂g̃
h (p, y)

∣∣+ ∣∣d̂g̃
h (p, y)− I(d̂g̃

h )(p, x)
∣∣, (17)

and using Proposition 2.2, Lemma 3.1 (15), and simple manipulations (in that order) we
obtain∣∣dg

S(p, x)− I(d̂g̃
h

)
(p, x)

∣∣
≤ C(h)diam(S)h 1

2 + Mg̃‖x − y‖ + CL(1x)
1
2 +
(

max
y∈P(x)

d̂g̃
h (p, y)− min

y∈P(x)
d̂g̃

h (p, y)
)
.

The last term can be dealt with using (16). Since we want bothh ↓ 0 and h
1x ↑ ∞, in order

to have increasing fidelity in the approximation ofdg̃
h by its numeric counterpart̂dg̃

h ,11 we
can choose (for instance)h = Cx (1x)γ for some constantCx >

√
d andγ ∈ (0, 1). We

10 One may imagine several interpolation schemes satisfying this not-stringent-at-all condition.
11 This way, we will have an increasing number of points inÄh.
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then obtain

∥∥dg
S(p, ·) − I

(
d̂g̃

h

)
(p, ·)∥∥L∞(S) ≤ (1x)

γ

2 C(1x;S), (18)

whereC(1x;S) goes to a constant (that depends onS) as1x ↓ 0, and this provides the
desired bound.

To recap, we have obtained that the use of an Euclidean approximation in the bandÄh to
the intrinsic distance function on the level-setS doesn’t (meaningfully) change the order of
the whole numerical approximation, in the worst case scenario. While in the most general
case the theoretical bound for the error of our method is of orderh1/2 and the general order
of the error of the underlying numerical scheme is(1x)1/2, for all practical purposes the
approximation error (overS) between both distances (dg

S anddg̃
h ) is of orderh (see remark

after Corollary 2.1), and the practical numerical error betweendg̃
h andd̂g̃

h is of order(1x)β

(for someβ ∈ [ 1
2, 1) for our first order schemes). Then, the practical bound for the total error

becomes something of order(1x)min(β,γ ). Therefore, choosing a big enoughγ (<1) dispels
any concerns about worsening the overall error rate when doing Cartesian computations on
the band.12

To conclude, let’s point out that since we are working within a narrow band (Äh) of the
surfaceS, we are actually not increasing the dimensionality of the problem. We can then
work with a Cartesian grid while keeping the same dimensionality as if we were working
on the surface.13

4. EXPERIMENTS

We now present a number of 3D examples of our algorithm. Recall that although all the
examples are given in 3D, the theory presented above is valid for any dimensiond ≥ 3.

Two classes of experimental results are presented. We show a number of intrinsic dis-
tance functions for implicit surfaces, as well as geodesics computed using these functions.
In order to compute interesting geodesics, we use also nonuniform weights, permitting the
computation of crest/valleys, and optimal paths with obstacles. We also experimentally com-
pare our results with those obtained on triangulated surfaces using the fast marching tech-
nique developed by Kimmel and Sethian (for this we use the results and software reported
in [6]).

Figures 4, 5, and 6 show the intrinsic distance function for implicit surfaces computed
with the method here proposed (g = 1). An arbitrary seed point on the implicit surface has
been chosen, and pseudo colors are used to improve the visualization. Red corresponds
to low values of the distance and blue to the high ones. We observe that, as expected, the
distance (colors) vary smoothly, and that close points have similar colors and far points
have very different colors (close and far measured on the surface of course).

In Fig. 7 we compare the result of our approach with that of fast marching on a triangulated
surface (all triangulated-surface computations were done with the package reported in
[6]). We also show absolute differences (error) between distances obtained through both

12 Note that the numerical scheme used by the fast marching algorithm decreases its accuracy when nondiffer-
entiable points of the distance appear, this can happen for instance when the domain contains the cut locus of the
initial set [15]. In any case,(1x)

1
2 is the slowest error rate achievable.

13 The number of points in the band can be roughly estimated by the quantity 2h area[S] when1x = 1.
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FIG. 4. Distance maps from a point on the sphere, torus, and teapot (three views are presented for each model).

approaches. The particular pattern of the error is the subject of future research. In Fig. 8
we show level lines of the intrinsic distance function computed with the technique here
proposed.

Before concluding this part of the experiments, let’s give some technical details on
the implementation. The code for the examples in this paper was written in C++. For
visualization purposes, VTK was used. Most of the “hard code” was done taking advantage
of Blitz++’s double templatized arrays and related routines, see [9]. The implicit models
used in this paper were obtained from [67] (other techniques, e.g., [40], could be used as
well). All the code was compiled and run in a 450 Mhz Pentium III, with 256 Mb of RAM,
working under Linux (RedHat 6.2). The compiler used wasegcs-2.91.66 and the level of
optimization was 3. In Table 1 we show running times of the intrinsic distance map algorithm
for some of the implicit models we used, along with the correspondingoffset-value (h) and
size and number of grid points inÄh for each model.

4.1. Geodesics on Implicit Surfaces

To find geodesic curves on the implicit surface, we backtrack starting from a specified
target point toward the seed point, while traveling on the surface in the direction given



FIG. 5. Distance map from a point on a portion of white/gray matter boundary of the cortex.

FIG. 6. Distance map from one seed point on a knot. In this picture we evidence that the algorithm works
well for quite convoluted geometries (as long ash is properly chosen). Note how points close in the Euclidean
sense but far away in the intrinsic sense receive very different colors, indicating their large (intrinsic) distance.

750
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FIG. 7. Top: Distance map from a single seed point (situated at the nose) on an implicit bunny (g = 1). The
figure on the top-left was obtained with the implicit approach (dh) here presented, while the one on the top-right
was derived with the fast marching on triangulated surfaces (d1) technique. Bottom: Three views of the absolute
difference between both distance functions (dh − d1). The maximal difference (error between the distances) is
4.1439, being 91.5599 the maximal computed distance in the band.

by the (negative) intrinsic-distance gradient. This means that after we have computed the
intrinsic distance function as explained above, we have to solve the following ODE (which
obviously keeps the curve onS): {

γ̇ = −∇ψdg̃
Äh
(γ )

γ (0) = p ∈ S,
where

∇ψdg̃
Äh
(p)

1= ∇dg̃
Äh
(p)− (∇dg̃

Äh
(p) · ∇ψ(p))∇ψ(p)

TABLE 1

Model Size #D (Äh,1x) h Running Time (secs)

Brain 122× 142× 124 168,603 1.75 9.4
Bunny 81× 80× 65 38,107 1.75 1.99
Knot 80× 81× 44 16,095 1.0 0.76
Sphere 70× 70× 70 11,800 1.75 0.65
Torus 64× 64× 64 21,704 1.75 1.16
Teapot 80× 55× 46 24,325 1.75 1.22
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FIG. 8. Top: Level lines for the intrinsic distance function depicted in Fig. 7 (left). Bottom: Level lines
for the intrinsic distance function depicted in Fig. 4 (second row). In both rows, the (22) levels shown are
0.03, 0.05, 0.1, . . . ,0.95, 0.97 percent of the maximum value of the intrinsic distance, and the coloring of the
surface corresponds to the intrinsic distance function. Three views are presented. Note the correct separation
between adjacent level lines. Note also how these lines are “parallel.”

is the gradient ofdg̃
Äh

at p ∈ S projected onto the tangent space toS = {ψ = 0} at p. Since
we must discretize the above equation, one can no longer assume that at every instant the
geodesic pathγ will lie on the surface, so a projection step must be added. In addition,
since all quantities are known only at grid points, an interpolation scheme must be used
to perform all evaluations at positions given byγ . We have used a simple Runge–Kutta
integration procedure, with adaptive step, namely an ODE23 procedure.

Before presenting examples of geodesic curves, we should note that we are assuming that
∇ψdg̃

Äh
, the extrinsic gradient of the distance in the band, is a good approximation of∇Sdg

S ,
the intrinsic gradient of the intrinsic distance (and not justdg̃

Äh
a good approximation ofdg

S
as we have previously proved). Bounding the error between these two gradients, e.g., using
the framework of viscosity solutions (since intrinsic distances are not necessarily smooth),
is the subject of current work (see also next section for a numerical experiment).

The figures described next illustrate the computation of geodesic curves on implicit
surfaces for different weightsg. In all the figures the geodesic curve is drawn on top of the
surface, which is colored as before, colors indicating the intrinsic weighted distance.

In Fig. 9 we present both the geodesic curve computed with our technique and the
one computed with the fast marching algorithm on triangulated surfaces following the
implementation reported in [6].

In Fig. 10 we show the computation of sulci (valleys) on an implicit surface representing
the boundary between the white and gray matter in a portion of the human cortex (data
obtained from MRI). Here the (extended) weightg̃ is a function of the mean curvature
given by [6]

g̃valley(x) = ω +
(

M(x)− min
y∈Äh

M(y)
)p
,
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whereM stands for the mean curvature of the level sets ofψ , so it is computed simply as
M(x) = 1ψ(x). In the example presented we usedω = 100 andp = 3. More details on
the use of this approach for detecting valleys (and creases) can be found in [6] and in the
references therein.

In Fig. 11 we show the computation of geodesic curves with obstacles on implicit surfaces.
This is an important computation for topics such as motion planning on surfaces.

4.2. Simple Numerical Accuracy Validations

We conclude the examples with some simple numerical validations. Since for a sphere,
for instance, the real distances can be computed, we compare these with those numerically
computed with our algorithm. As previously explained, for this case the error of our proposed
band-based approximation of the intrinsic (continuous) distance is of orderh (actually, it
can be shown that the order is slightly superlinear). We have tested the computed distance
between given seed points in the sphere for a number of different grid sizes (resolutions) in
the cube [0, 1]3, obtaining the errors given in Table 2. In obtaining the data we have used
h = 2(1x)0.7. It can be observed an overall error(‖dS − I(d̂h)‖L∞(S)

)
rate given approximately by(1x)0.653.

Although a thorough study of the approximation of∇Sdg
S by ∇ψdg̃

Äh
will be the subject

of future research, we will present below some numeric evidence. Note of course that the
main concern, as previously explained, is at the cut locus (singularities on the gradient of
the distance function). To the best of our knowledge, complete analysis of the accuracy of
the gradient of the intrinsic distance has not yet been performed for triangulated surfaces.

TABLE 2

Size h Overall Numerical Error

100 0.079621 0.111035
120 0.070081 0.101189
140 0.062912 0.090596
160 0.057298 0.084766
180 0.052764 0.077357
200 0.049012 0.072119
220 0.045849 0.069262
240 0.043140 0.064085
260 0.040789 0.061003
280 0.038727 0.057780
300 0.036901 0.056024
320 0.035271 0.053569
340 0.033806 0.051469
360 0.032480 0.048853
380 0.031273 0.047292
400 0.030170 0.046195
420 0.029157 0.044747
440 0.028223 0.043254
460 0.027358 0.041999
480 0.026555 0.040501
500 0.025807 0.039396
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FIG. 9. Top: Distance map (weight= 1) and geodesic curve between two points on an implicit bunny. We
show two geodesics superimposed, the black one is the one obtained via the implicit back propagation described
in the text, while the white one is obtained when performing the back propagation computation in the triangulated
surface. It is important to note that in both cases the distance function used is the one computed with our implicit
approach; to feed the data to the triangulated surfaces back-propagation algorithm, we first interpolated the intrinsic
distance to points onto the triangulated surface. We can clearly see that both geodesics overlap almost entirely,
justifying the proposed implicit back propagation approach when compared to the one on the triangulated surface.
Bottom: We repeat the top figure, but now for the white curve (C1) the distance used was also computed on the
triangulated surface. In other words, the black curve (Ch) corresponds to complete implicit computations, both
distance and back propagation, while the white one corresponds to complete computations on the triangulated
domain. For this particular example, the geodesic obtained with the computations on the implicit surface is actually
shorter than the one obtained with computations on the triangulated representation.
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FIG. 10. These four figures show the detection of valleys over implicit surfaces representing a portion of
the human cortex. We use a mean curvature based weighted distance. In the left-upper corner we show the mean
curvature of the brain surface (clipped to improve visualization). It is quite convincing that this quantity can be
of great help to detect valleys. In the remaining figures, we show two curves over the surface, whose coloring
correspond to the mean curvature (not clipped, from red, yellow, green to blue, as the value increases). The red
curve corresponds to thenatural geodesic (g = 1), while the white curve is the weighted-geodesic that should
travel through “nether” regions. Indeed, a very clear difference exists between both trajectories, since the white
curve makes its way through regions where the mean curvature attains low values. The figure in the right-low
quadrant is a zoomed view of the same situation.

We make all our computations again for simplicity, over a sphere, takingg = 1 (we will
discard the superscriptsg andg̃ for the remains of this section). As an indicator of how well
∇ψdÄh approximates∇SdS (overS) we look at how much the quantity‖∇ψdÄh‖ differs
from 1. In Fig. 12 we show nine histograms of the aforementioned quantity, for 1000 points
on the sphere and for nine (increasing) values ofh. It can be observed that the values of
‖∇ψdÄh‖ spread more and more ash grows.

5. EXTENSIONS

5.1. General Metrics: Solving Hamilton–Jacobi Equations on Implicit Surfaces

Since the very beginning of our exposition we have restricted ourselves toisotropic
metrics. As stated in the introduction, this already has many applications, and just a few



756 MÉMOLI AND SAPIRO

FIG. 11. Distance map and geodesic curve between two points on an implicit bunny surface with an intrinsic
obstacle on it. We now use a binary weight,g = {1,∞}, being infinity at the obstacle. This permits, as illustrated
in the figure, the computation of optimal paths with obstacles on implicit surfaces. The blue path corresponds to
the obstacle-weighted distance function, and the white one to the natural (g = 1) distance function. Both geodesics
are shown over the surface of the bunny, the pseudocolor representing the weighted distance for the surface with
obstacle. The obstacle is also shown in blue. Note that the geodesic is not touching the obstacle due to the low grid
resolution used to define it in this example (low resolution which makes it actually not a binary but a multivalued
obstacle).

were shown in the previous section. Since the fast marching approach has been recently
extended to more general Hamilton–Jacobi equations by Osher and Helmsen [45], we are
immediately tempted to extend our framework to these equations as well. These equations
have applications in important areas such as adaptive mesh generation on manifolds, [28],
and semiconductors manufacturing.

Then, we are led to investigate the extension of our algorithm to general metrics of the
form, G : S → IRd×d, that is, a positive definite 2-tensor. Our new definition of weighted
length becomes

LG{C} 1=
∫ b

a

√
G(C(t))[Ċ(t), Ċ(t)] dt,



DISTANCE FUNCTIONS AND GEODESICS 757

FIG. 12. Histograms of‖∇ψdÄh‖ for several (increasing) values ofh, for 1000 points uniformly distributed
on a sphere. From left to right and top to bottom, the histograms are plotted for increasing values ofh.

and the problem is to find for everyx ∈ S (for a fixed p ∈ S),

dG
S (x, p)

1= inf
Cpx[S]
{LG(C)}. (19)

As before, we attempt to solve the approximate problem in the bandÄh, with an extrinsic
distance

dG̃
Äh
(x, p)

1= inf
Cpx[Äh]

{LG̃(C)}, (20)

where

LG̃{C} 1=
∫ b

a

√
G̃(C(t))[Ċ(t), Ċ(t)] dt

for an adequate extensioñG of G. The solution of the extrinsic problem satisfies (in the
viscosity sense) the Eikonal equation

(G̃−1)(x)
[∇dG̃

Äh
,∇dG̃

Äh

] = 1. (21)

The first issue now is the numerical solvability of the preceding equation using a fast
marching type of approach. Osher and Helmsen [45] have extended the capabilities of the
fast marching to deal with Hamilton–Jacobi equations of the form

H(x,∇ f ) = a(x)
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for geometrically based HamiltoniansH(x, Ep) : Ä(⊂ IRd)× IRd→ IR that satisfy

H(x, Ep) > 0 if Ep 6= E0
H(x, Ep) is homogeneous of degree 1 inEp
pi Hpi (x, Ep) ≥ 0 for 1≤ i ≤ d ∀x ∈ Ä, ∀ Ep.

(22)

It easily follows that these conditions hold for (21) considering

H(x, Ep) 1=
√
(G̃−1)(x)[ Ep, Ep],

when the matrixG̃−1(x) is diagonal. Therefore, we can solve this kind of Hamilton–Jacobi
equations (the extrinsic problem) with the extended fast marching algorithm.

In order to show that our framework is valid for these equations as well, all what we
basically need to do is to prove that the extrinsic distance (20) on the offsetÄh converges to
the intrinsic one on the implicit surfaceS, i.e., (19). This can be done repeating the steps in
the convergence proof previously reported in Section 2.3 for isotropic metrics. Combining
this with the results of Osher and Helmsen we then obtain that our framework can be
applied to a larger class of Hamilton–Jacobi equations: general intrinsic Eikonal equations.
The extension of these ideas to even more general intrinsic Hamilton–Jacobi equations of
the form Ĥ(x,∇Su) = â(x) x ∈ S remains to be studied, and eventual advances will be
reported elsewhere.

5.2. Nonimplicit Surfaces

The framework we presented was here developed for implicit surfaces, although it applies
to other surface representations as well. First, if the surface is originally given in polygonal
or triangulated form, or even as a set of unconnected points and curves, we can use a number
of available techniques, e.g., [34, 40, 47, 55, 58, 65, 67] (and some very nice public domain
software [40]), to first implicitize the surface and then apply the technique here proposed.14

Note that the implicitation needs to be done only once per surface as a preprocessing step
and will remain valid for all subsequent uses of the surface. This is important, since many
applications have been shown to benefit from an implicit surface representation. Moreover,
as we have seen, all what we need is to have a Cartesian grid in a small band around
the surfaceS. Therefore, there is no explicit need to perform an implicitation of the given
surface representation. For example, if the surface is given by a cloud of unconnected points,
we can compute distances intrinsic to the surface defined by this cloud, as well as intrinsic
geodesic curves, without explicitly computing the underlying surface. All that is needed is
to embed this cloud of points in a Cartesian grid and consider only those points in the grid
at a distanceh or less from the points in the cloud. The computations are then done on this
band.

6. CONCLUDING REMARKS

In this article we have presented a novel computationally optimal algorithm for the
computation of intrinsic distance functions and geodesics on implicit hyper-surfaces. The

14 The same techniques can be applied to transform any given implicit function into a distance one.
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underlying idea is based on using the classical Cartesian fast marching algorithm in an
offset bound around the given surface. We have provided theoretical results justifying this
approach and presented a number of experimental examples. The technique can also be
applied to 3D triangulated surfaces, or even surfaces represented by clouds of unconnected
points, after these have been embedded in a Cartesian grid with proper boundaries. We have
also discussed that the approach is valid for more general Hamilton–Jacobi equations as
well.

Many questions remain open. Recently, T. Barth (and independently D. Chopp) have
shown techniques to improve the order of accuracy of fast marching methods. It will be inter-
esting to see how the method proposed here can be extended to match such accuracy. Related
to this, we are currently working on tighter bounds for the error betweendg̃

Äh
anddg

S , as well as
bounds for the error between their corresponding derivatives. We are interested in extending
the framework presented here to the computation of distance functions on high codimension
surfaces and general embeddings. More generally, it remains to be seen what class of intrin-
sic Hamilton–Jacobi (or in general, what class of intrinsic PDEs) can be approximated with
equations in the offset bandÄh. In an even more general approach, what kind of intrinsic
equations can be approximated by equations in other domains, with offsets being just a
particular and important example. Even if fast marching techniques do not exist for these
equations, it might be simpler and even more accurate to solve the approximating equations
in these domains than in the original surfaceS. The framework here presented then not only
offers a solution to a fundamental problem, but also opens the doors to a new area of research.

APPENDIX A: DISTANCE MAPS IN EUCLIDEAN SPACE

We now present a few important results on distance maps. These have been mainly
adapted (and adopted) from [4, 5, 26, 54].

Whereverψ is smooth we know that it satisfies theEikonalequation

‖∇ψ‖ = 1. (A.1)

The distance function satisfies this PDE everywhere in theviscosity sense[29, 20]. It is also
well known that within a sufficiently small neighborhood ofS = {ψ = 0},ψ(·) is smooth,
or at least as smooth asS. These assertions can be made precise through the following
Lemma from [24]:

LEMMA A.1. LetS be a Ck (k ≥ 2) codimension1 closed hyper-surface of IRd. Then,
the signed distance function toS is Ck(U ) for a certain neighborhood U ofS.

Differentiating‖∇ψ‖2 = 1, we obtain

D(∇ψ)∇ψ = 0.

Therefore,

Hψ∇ψ = 0 (A.2)

meaning that the normal toS at p is an eigenvector of the Hessian, associated to the null
eigenvalue. Differentiating again we obtain

D3ψ∇ψ + (D2ψ)2 = 0. (A.3)
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The next Lemma, whose detailed proof can be found in [4], is mainly based in the
relations (A.2) and (A.3), and it is used to verify that the functionµ : (−ε, ε)→ IRd×d

defined byµ(t) = Hψ(p0+ t∇ψ(p0))(p0 is any point in the manifold{ψ = 0}) satisfies
the followingODE:

µ̇(t)+ µ2(t) = 0 t ∈ (−ε, ε)

LEMMA A.2. The eigenvectors ofHψ are constant along the characteristic lines x(s) =
x0+ s∇ψ(x(s)) (arc length parametrized, x0 is a point ontoS) ofψ within any neighbor-
hood where it is smooth, and the eigenvalues vary according to

λi (s) = λi (0)

sλi (0)+ 1
.

We use the above formula to bound the maximum offset|ε| of {ψ = 0} that keeps{ψ = ε}
smooth, we just take|ε|(max1≤i≤d−1 |λi (0)|)<1.

We now obtain bounds on the eigenvalues of the Hessian of the distance function:

COROLLARY A.1. The eigenvaluesλi (p)of Hψ(p) (principal curvatures of{x : ψ(x)=
ψ(p)}) are absolutely bounded by

|λi (p)| ≤ MS
1− |ψ(p)|MS

,

whereMS absolutely bounds all eigenvalues ofHψ( p), p ∈ S; and |ψ(p)| is sufficiently
small.

To conclude, let’s present some concepts on projections onto the implicit surfaceS, zero
level-set of the distance functionψ . It is clear that the projection of a pointp ∈ IRd ontoS
is given by

5S(p) = p− ψ(p)∇ψ(p).

This projection is well defined as long as there is only onex ∈ S such that5S(p) = x.
This can be guaranteed when working within a small tubular neighborhood of a smooth
surfaceS. Moreover, this map is smooth within a certain tubular neighborhood ofS [54]:

THEOREMA.1. If S ⊂ IRd is a compact Ck (k ≥ 2) codimension1 hyper-surface, then
there is a h(S) > 0such that the map5S is well defined and belongs to Ck−1({x : d(x,S) <
h}, IRd).

APPENDIX B: TECHNICAL LEMMA

LEMMA B.1. Let f : [a, b]→ IR be a C1([a, b]) function such that f′ is Lipschitz. Let
ϕ ∈ L∞([a, b]) denote(one of) f ′’s weak derivative. Then one has

∫ b

a
f ′2(x) dx = f f ′

∣∣b
a −

∫ b

a
f (x)ϕ(x) dx
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Proof. Let ext( f ′) denote the Lipschitz extension off ′ to all IR given by

ext( f ′)(x) =


f ′(a) for x < a

f ′(x) for x ∈ [a, b]

f ′(b) for x > b

Then let ext( f ) be given by any (bounded) primitive of ext( f ′), that is, ext( f ) = ∫ ext( f ′).
Let ϕ̂ ∈ L∞ IR denote ext( f ′)’s weak derivative, and we have that ˆϕ|[a,b] andϕ coincide as
weak derivatives off . Let {ηε(·)}{ε>0} be a family of bounded support mollifiers. Then we
define the function

fε = ext( f ) ∗ ηε.

It is clear that we will have (→→ means uniform convergence)

(a)

fε
ε↓0
−→−→ ext( f ) over compact sets ofIR

(b)

f ′ε
ε↓0
−→−→ ext( f ′) over compact sets ofIR

(c)

f ′′ε
ε↓0−→ ϕ̂ locally in L2(IR)

Since f ′ε ∈ C∞(IR), we can use integration by parts to conclude that∫ b

a
f ′ε

2
(x) dx = f ′ε fε

∣∣b
a −

∫ b

a
fε(x) f ′′ε (x) dx.

Now the left-hand side will converge to
∫ b

a f ′2(x) dx in view of (b); the first term in
the right-hand side will obviously converge tof f ′|ba. For the remaining term we observe
the following, using Cauchy–Schwartz inequality (let〈,〉 : L2([a, b])× L2([a, b])→ IR
denoteL2([a, b])’s internal product):∣∣∣∣∫ b

a
fε(x) f ′′ε (x) dx −

∫ b

a
f (x)ϕ(x) dx

∣∣∣∣
= |〈 f ′′ε , fε〉 − 〈ϕ, f 〉| = |〈 f ′′ε , fε − f 〉 + 〈 f, f ′′ε − ϕ〉|
≤ (b− a)

((
max
{x∈[a,b]}

| f ′′ε (x)|
)
‖ fε − f ‖L2([a,b])

+
(

max
{x∈[a,b]}

| f (x)|
)
‖ f ′′ε − ϕ‖L2([a,b])

)
.

Now, everything is under control since

max
{x∈[a,b]}

| f ′′ε (x)| ≤ ‖ϕ‖L∞([a,b]).
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Hence, we have proved∫ b

a
fε(x) f ′′ε (x) dx

ε↓0−→
∫ b

a
f (x)ϕ(x) dx

the last step of the proof.j
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