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Abstract

A framework for solving variational problems and partial differential equations that define maps onto a given ge-

neric manifold is introduced in this paper. We discuss the framework for arbitrary target manifolds, while the domain

manifold problem was addressed in [J. Comput. Phys. 174(2) (2001) 759]. The key idea is to implicitly represent the

target manifold as the level-set of a higher dimensional function, and then implement the equations in the Cartesian

coordinate system where this embedding function is defined. In the case of variational problems, we restrict the search

of the minimizing map to the class of maps whose target is the level-set of interest. In the case of partial differential

equations, we re-write all the equation�s geometric characteristics with respect to the embedding function. We then

obtain a set of equations that, while defined on the whole Euclidean space, are intrinsic to the implicitly defined target

manifold and map into it. This permits the use of classical numerical techniques in Cartesian grids, regardless of the

geometry of the target manifold. The extension to open surfaces and submanifolds is addressed in this paper as well. In

the latter case, the submanifold is defined as the intersection of two higher dimensional hypersurfaces, and all the

computations are restricted to this intersection. Examples of the applications of the framework here described include

harmonic maps in liquid crystals, where the target manifold is a hypersphere; probability maps, where the target

manifold is a hyperplane; chroma enhancement; texture mapping; and general geometric mapping between high di-

mensional manifolds.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

In a number of applications in mathematical physics, image processing, computer graphics, and medical

imaging, we have to solve variational problems and partial differential equations defined on a general

manifold M (domain manifold), which map the data onto another general manifold N (target manifold).

That is, we deal with maps from M to N. When these manifolds are for example three-dimensional
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surfaces, the implementation of the corresponding gradient descent flow or the given PDEs is considerably

elaborate. In [5] we have shown how to address this problem for general domain manifolds, while re-

stricting the target manifolds N to the trivial cases of the Euclidean space or hyperspheres (this framework
has been followed for example in [2]). The key idea was to implicitly represent the domain surface as the

(zero) level-set of a higher dimensional function /, and then solve the PDE in the Cartesian coordinate

system which contains the domain of this new embedding function. The technique was justified and

demonstrated in [5]. It is the goal of this paper, [33], to show how to work with general target manifolds,

and not just hyperplanes or hyperspheres as previously reported in the literature. Inspired by [5], we also

embed the target manifold N as the (zero) level-set of a higher dimensional function w. That is, when
solving the gradient descent flow (or in general, the PDE), we guarantee that the map receives its values on

the zero level-set of w. The map is defined on the whole space, although it never receives values outside of
this level-set. Examples of applications of this framework include harmonic maps in liquid crystals (N is a

hypersphere) and three-dimensional surface warping [46]. In this last case, the basic idea is to find a smooth

map between two given surfaces. Due to the lack of the new frameworks introduced here and in [5], this

problem is generally addressed in the literature after an intermediate mapping of the surfaces onto the plane

is performed (see also [27,49]). With these novel frameworks, direct three-dimensional maps can be com-

puted without any intermediate mapping, thereby eliminating their corresponding geometric distortions

[34]. For this application, as in [46], boundary conditions are needed, and how to add them to the

frameworks introduced here and in [5] is addressed in [34].
To introduce the ideas, in this paper we concentrate on flat domain manifolds. 1 When combining this

framework with the results in [5], we can of course work with general domains and then completely avoid

other popular surface representations, like triangulated surfaces. We are then able to work with intrinsic

equations, in Euclidean space and with classical numerics on Cartesian grids, regardless of the geometry of

the involved domain and target manifolds. In addition to presenting the general theory, we also address the

problem of target submanifolds and open hypersurfaces. A number of theoretical results complement the

algorithmic framework here described.

For illustration purposes only, the proposed framework is presented for classical equations from the
theory of harmonic maps. The technique can easily be extended to general equations, as it will be clear from

the developments below.

1.1. Why implicit representations?

Let us conclude this introduction describing the main reasons and advantages of working with implicit

representation when dealing with PDEs and variational problems.

The implicit representation of surfaces, here introduced for solving variational problems and PDEs, is
inspired in part by the level-set work of Osher and Sethian [36]. This work, and those that followed it,

showed the importance of representing deforming surfaces as level-sets of functions with higher dimen-

sional domains, obtaining more robust and accurate numerical algorithms (and topological freedom). Note

that, in contrast with the level-set approach of Osher and Sethian, our target manifold is fixed, what is

‘‘deforming’’ is the dataset being mapped onto it.

Solving PDEs and variational problems with polynomial meshes involves the non-trivial discretization

of the equations in general polygonal grids, as well as the difficult numerical computation of other

quantities like projections onto the discretized surface (when computing gradients and Laplacians for ex-
ample). Although the use of triangulated surfaces is quite popular, there is still no consensus on how to
1 For completeness, we will present the general equations for both generic domain and target manifolds at the end of the paper. These

equations are easily derived from [5] and the work presented in this paper.
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compute simple differential characteristics such as tangents, normals, principal directions, and curvatures.

On the other hand, it is commonly accepted that computing these objects for iso-surfaces (implicit repre-

sentations) is simpler and more accurate and robust. This problem becomes even more significant when we
not only have to compute these first and second order differential characteristics of the surface, but also

have to use them to solve variational problems and PDEs for data defined on the surface. Very little work

has been done on the formal analysis of finite difference schemes on non-Cartesian meshes. 2 Note also that

working with polygonal representations is dimensionality dependent, and solving these equations for high

dimensional (>2) surfaces becomes even more challenging and significantly less studied. The work here

developed is valid for all dimensions of interest (we develop the computational and theoretical framework

independently of the manifold dimension). Note that the computational cost of working with implicit

representations is not higher than with meshes, since all the work is performed in a narrow band around the
level-set(s) of interest.

Our framework of implicit representations enables us to perform all the computations on the Cartesian

grid corresponding to the embedding function. These computations are, nevertheless, intrinsic to the sur-

face. Advantages of using Cartesian grid instead of a triangulated mesh include the availability of well

studied numerical techniques with accurate error measures and the topological flexibility of the surface, all

leading to simple, accurate, robust and elegant implementations. The approach is general (applicable to

PDEs and variational problems beyond those derived in this paper) and dimensionality independent as

well. We should note of course that the computational framework here developed is only valid for man-
ifolds which can be represented in implicit form or as intersection of implicit forms. As mentioned above,

problems such as three-dimensional shape warping via PDEs could not be addressed (without intermediate

projections) without the framework here proposed.

Numerical schemes that solve gradient descent flows and PDEs onto generic target manifolds N (and

spheres or surfaces in particular) will, in general, move the points outside of N due to numerical errors.

The points will then need to be projected back, 3 see for example [1,11] for the case of N being a sphere

(where the projection is trivial, just a normalization). For general target manifolds, this projection means

that for every point p 2 Rd (N � Rd) we need to know the closest point to p inN. This means knowing the
distance from every point p 2 Rd to N (or at least all points in a band of N). This is nothing else than an

implicit representation of the target N, being the particular embedding in this case a distance function.

This presents additional background for the framework here introduced, that is, if the embedding function

for the surface has to be computed anyway for the projection, why not use it from the beginning if it helps

in other steps in the computation?

In a number of applications, surfaces are already given in implicit form, e.g. [7], therefore, the framework

introduced in this paper is not only simple and robust, but it is also natural in those applications. Moreover,

in the state-of-the-art and most commonly used packages to obtain three-dimensional models from range
data, the algorithms output an implicit (distance) function (see for example graphics.stanford.edu/projects/

mich/). Therefore, it is very important, if nothing else for completeness, to have the computational

framework here developed, so that the surface representation is dictated by the data and the application

and not the other way around. On the other hand, not all surfaces (manifolds) are originally represented in

implicit form. When the target manifold N is simple, like hyperspheres in the case of liquid crystals, the

embedding process is trivial. For generic surfaces, we need to apply an algorithm that transforms the given

explicit representation into an implicit one. Although this is still a very active area of research, many very
2 Very important work has been done for finite element approaches, e.g. by the group of Prof. M. Rumpf; as well as for particular

equations on particular sub-division representations [3].
3 For particular flat target manifolds as the whole space Rd or as those in [37], the projection is not needed. Other authors, e.g. [8,28],

have avoided the projection step for particular cases, while in [51] the authors modify the given variational formulation, in some

restricted cases, to include the projection step.
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good algorithms have been developed, e.g. [16,20,29,48]. Note that this translation needs to be done only

once for any surface. Note also that for rendering, the volumetric data can be used directly, without the

need for an intermediate mesh representation.
Using the results described below and the basic ‘‘dictionary’’ provided in the Appendix, we can translate

PDEs and variational problems, based on intrinsic characteristics of the manifold, into PDEs and varia-

tional problems that depend on the implicit manifold and the embedding space, and from there, use existent

numerical schemes. This translation is done in a systematic and generic fashion.
2. The computational framework

From now on we assume that the target d � 1-dimensional manifold N is given as the zero level set of a

higher dimensional embedding function w : Rd ! R, which we consider to be a signed distance function

(this mainly simplifies the notation). For the case where N is a surface in three-dimensional space for

example, then w : R3 ! R. We also assume that the domain manifold M is flat and open (as mentioned in

Section 1, general domain manifolds were addressed in [5]). We illustrate the basic ideas with a functional

from the theory of harmonic maps. This is just a particular example (and a very important one), and from

this example it will be clear how the same arguments can be applied to any given variational problem and

PDE. In particular, it can be applied to common Navier–Stokes flows used in brain warping [34].

2.1. The variational formulation and its Euler–Lagrange

We search for necessary conditions for the functional E½~u�, defined by

E½~u�,
Z
M

e½~u� dMv; ð1Þ

where

e½~u�, 1

2
kJ~uk2F ð2Þ

to achieve a minimum. Here, k � k2F ¼
P

ijð�Þ
2

ij is the norm of Frobenius and J~u is the Jacobian of the map
~u : M ! fw ¼ 0g. Note that here we are already restricting the map to be onto the zero level-set of w, that
is, onto the surface of interest N (the target manifold). This is what permits us to work with the embedding

function and the whole space, while guaranteeing that the map will always be onto the target manifold, as

desired. 4 Once again, this energy will be used throughout this paper to exemplify our framework. It will be

clear after developing this example that the same arguments work for other variational formulations, as

well as for generic PDEs defined onto generic surfaces.

Proposition 1. The Euler–Lagrange of Eq. (1), with (2), is given by

D~uþ
X
k

Hw
o~u
oxk

;
o~u
oxk

" # !
rwð~uÞ ¼ 0; ð3Þ

where Hw stands for the Hessian of the embedding function w (and we used the notation A½~x;~y� ¼~yTA~x). The
solution to this equation is a map onto the zero level-set of w.
4 We use~� to note that for the most general case, the function is vectorial.
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Proof. The proof is based on adding to the classical techniques to compute Euler–Lagrange equations a

projection step that guarantees that the perturbation keeps the map onto fw ¼ 0g.
Assume that ~u is a map minimizing Eð�Þ. Given t > 0, we construct the variation

~vt,~uþ t~r;

where ~r is a compact C1 map in M. For an arbitrary x 2 M, we will in general not obtain that
~vtðxÞ 2 fw ¼ 0g for all t and x. That is, wð~vtðxÞÞ 6¼ 0 at some ðt; xÞ. Therefore, this variation is not admis-

sible. On the other hand, we can from it construct an admissible variation via

~wt,Pfw¼0gð~vtÞ;

where Pfw¼0g : Rd ! fw ¼ 0g is the projection operator onto fw ¼ 0g. Note that since w is a signed distance

function, we can simply write this projection operator onto fw ¼ 0g as

Pfw¼0gð~aÞ ¼~a� wð~aÞrwð~aÞ:

Let us now define

EðtÞ,E½~wt�:

Since the energy achieves a minimum for t ¼ 0,

_E0,
dEðtÞ
dt

����
ðt¼0Þ

¼ 0:

Let us compute this first variation. We have that

_E0 ¼
X
ij

Z
M

owi
t

oxj

d
owi

t
oxj

� �
dt

0
@

1
A
������
t¼0

dMv: ð4Þ

Moreover (recall that Hw stands for the Hessian of w),

owt

oxj
¼ o~u

oxj

 
þ t

o~r
oxj

!
� rwð~wtÞ �

o~u
oxj

  
þ t

o~r
oxj

!!
rwð~wtÞ � wð~wtÞHwð~wtÞ

o~u
oxj

 
þ t

o~r
oxj

!
ð5Þ

and we observe that

owt

oxj

����
ðt¼0Þ

¼ o~u
oxj

� rwð~uÞ � o~u
oxj

 !
rwð~uÞ

since wð~uÞ ¼ 0. We can further simplify this observing that 0 ¼ owð~uÞ=oxj ¼ rwð~uÞ � o~u=oxj. Therefore,

owt

oxj

����
ðt¼0Þ

¼ o~u
oxj

: ð6Þ

With a bit further work we can compute the additional derivative, d
owi

t
oxj

� �
=dt ¼ o

dwi
t

dt

� �
=oxj. This change

in the order of derivatives is done in order to immediately evaluate the result at t ¼ 0, thereby simplifying

the following derivative. Following in an similar fashion, we obtain
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dwi
t

dt
¼~r � rwð~wtÞ �~r

� �
rwð~wtÞ � wð~wtÞHwð~wtÞ~r ð7Þ

and

dwi
t

dt

����
ðt¼0Þ

¼~r � rwð~uÞ �~r
� �

rwð~uÞ: ð8Þ

Combining the above computations all together we obtain

d
owi

t
oxj

� �
dt

������
ðt¼0Þ

¼
o

dwi
t

dt

���
ðt¼0Þ

� �
oxj

¼ o~r
oxj

�rwð~uÞ o~r
oxj

� rwð~uÞ þHw ~r;
o~u
oxj

 !( )
� ð~r � rwð~uÞÞ Hw

o~u
oxj

 !
: ð9Þ

Following from (4) we have that 5

_E0 ¼
X
j

Z
M

o~wt

oxj

d o~wt
oxj

� �
dt

0
@

1
A
������
t¼0

dMv ¼
X
j

Z
M

o~r
oxj

� o~u
oxj

(
� ð~r � rwð~uÞÞHw

o~u
oxj

;
o~u
oxj

" #)
dMv: ð10Þ

Now, applying the divergence theorem we conclude the computation. We first write

X
ij

Z
M

o~r
oxj

� o~u
oxj

dMv ¼
X
i

Z
M

rri � rui dMv

and then apply the fact rri � rui ¼ r � ðriruiÞ � riDui, together with the divergence theorem, to obtain

(n stands for the outward unit normal to oMÞ.
X
ij

Z
M

o~r
oxj

� o~u
oxj

dMv ¼
X
i

Z
oM

ri
oui

on
dS �

Z
M

riDui dMv ð11Þ

To conclude we put together this last expression with (9), and after some algebra we obtain that _E0 is
equal toZ

oM

~r � J~un dS �
Z
M

~r � D~u

(
þ

X
k

Hw
o~u
oxk

;
o~u
oxk

" # !
rwð~uÞ

)
dMv: ð12Þ

The boundary condition is eliminated since the support of~r is compactly included inM. To eliminate the

additional term for an arbitrary~r we must impose

D~uþ
X
k

Hw
o~u
oxk

;
o~u
oxk

" # !
rwð~uÞ ¼ 0: � ð13Þ

Eq. (3) (or (13)) then gives the corresponding Euler–Lagrange for the given variational problem. Note,

once again from our computations, that despite all the terms ‘‘live’’ in the Euclidean space where the target
5 We have used as before the notation A½~x;~y� ¼~yTA~x.
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manifold is embedded, ~u will always map onto the level-set of interest, fw ¼ 0g, and, therefore, onto the

surface of interest. This is guaranteed by this equation, no additional computations are needed. This is the

beauty of the approach, while working freely on the Euclidean space (and, therefore, with Cartesian
numerics), we can guarantee that the equations are intrinsic to the given surfaces of interest. We will further

verify this in Section 2.3 to help the reader grasp the intuition behind this framework. In the same section

we present a particular example of the above equation for a target surface given by a hypersphere.

2.1.1. The gradient-descent flow

The gradient descent corresponding to (13) is given by

oui

ot
¼ Dui þ

Xd
k¼1

Hwð~uÞ
o~u
oxk

;
o~u
oxk

" #
ow
oui

ð~uÞ; ð14Þ

where the initial datum~u0 is given by the vector field we want to process, together with Neumann boundary

conditions

~uðx; 0Þ ¼~u0ðxÞ; x 2 M;
J~unjoM ¼ 0:

�
ð15Þ

To complete the picture, the use of Neumann boundary conditions needs to be justified. This is done in

Appendix A.
2.2. Connections with harmonic maps

The goal of this section is to illustrate the connections of the equations above with the well-known theory

of harmonic maps. As it is the case of the proof of Proposition 1, these connections are simple to derive, as

we do below. Nevertheless, the derivations themselves present illustrative calculus with implicit surfaces and

PDEs on them.

The expressions derived in previous sections come from the theory of harmonic maps, e.g.
[6,9,13,15,17,18,22,25,38,41–43]. In general, harmonic maps are defined as those maps between two man-

ifolds ðM; gÞ and ðN; hÞ which minimize the energy

E½~u�,
Z
M

e½~u� dVM; ð16Þ

where, in local coordinates, the energy density e½~u� is given by

e½~u�ðxÞ, 1

2
gpqðxÞhijð~uðxÞÞ

oui

oxp

ouj

oxq
: ð17Þ

We have used Einstein�s summation here, where repeated indices indicate summation with respect to this
index, together with the usual notation for tensors. 6 When both the domain and target manifolds are

represented explicitly, the classical case, the Euler–Lagrange equation corresponding to this energy is given

by (see [41])

DMul þ Cl
ijð~uÞgab

oui

oxa
ouj

oxb
¼ 0; ð18Þ
6 ðg�1Þij,gij.
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where DM is the Laplace–Beltrami operator (reduced to the regular Laplacian for the case of flat domain

manifolds) and Cl
ijð~uÞ stands for the Christoffel symbols of the target manifold, evaluated at~u. Note that the

first component, the Laplace–Beltrami of u, addresses the domain manifold, whereas the second term
addresses the target manifold. By embedding the target manifold, we are changing the Christoffel symbols

(expressing them in implicit form, see below), 7 while the work in [5] changed the other terms, since the

embedding was done to the domain manifold, see Section 4. The framework here introduced can then be

seen as the re-writing of given PDEs mapping manifolds to manifolds in such a way that the intrinsic

geometric characteristics of the equation are expressed using the embedding functions.

As an example, let us see what happens with the above energy for the Euclidean case. Since both metrics

are proportional to the identity

e½~u�ðxÞ ¼ K
2

X
ij

oui

oxj

� �2

which is just a constant multiplying kJ~uk2F. Therefore, the energy defined in the previous case is just a
particular case of harmonic maps. In general, this energy can be used in problems such as color image

denoising and directions denoising [43,44], as a regularization term for ill-possed problems defined on

general surfaces [19], for general denoising [40,47], for models of liquid crystals, and as a component of a

system for surface mapping and matching [15,34,49].

2.2.1. An(other) informal calculation

We now present an additional computation that connects in a deep way the implicit framework with

harmonic maps. We consider the harmonic energy density given in (17) for the planar domain manifold
case (gij ¼ dij). We can simplify things to obtain

e½~u�ðxÞ ¼ 1

2
hijð~uðxÞÞ

oui

oxp

ouj

oxp
¼ 1

2

X
p

h½~uxp ;~uxp �:

We know that Prw ¼ I�rwrwT can be thought of as the inverse of the target manifold�s metric tensor.

But since rw is a zero eigenvalue eigenvector for Prw, it will be a 1 eigenvalue eigenvector for P�1
rw. Then,

we cannot use the identification h ¼ ðhijÞ $ P�1
rw in the above expression for the energy density. However,

we can proceed as follows. Take � > 1 and define the metric 8

h�, �I
�

�rwrwT
��1

one can then compute the inverse as (it is an elementary formula, see for example [26])

h� ¼ 1

�
I

�
þrwrwT

�� 1

�
:

The energy density can be rewritten as (we will use a subindex �)

e�½~u�ðxÞ ¼
1

2�

X
i

k~uxik
2

 
þ 1

�� 1

X
i

j~uxi � rwj2
!
:

After computing the variational derivative for the functional
R
M
e�½~u�ðxÞ dx we obtain that~u must satisfy
7 Or alternatively, the second fundamental form of the target manifold.
8 Since � > 1, all the eigenvalues are positive.
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D~uþ 1

�� 1

X
i

Hw½~uxi ;~uxi �
 

þ D~u � rw

!
rw ¼ 0:

By multiplying all the terms in the above equation by �� 1 and letting � ! 1 we find that the expression

between brackets must vanish. As we will see in Section 2.3, what is between brackets is nothing but DmðxÞ
where mðxÞ ¼ wð~uðxÞÞ. So m is a harmonic function in M. It is also evident that m satisfies Dirichlet boundary

conditions if~u does, and since we are trying to map things from M to N, those boundary conditions for~u
must be such that distð~uðxÞ;NÞ ¼ 0 for x 2 M, so mjoM ¼ 0. Then, we conclude that m must be zero ev-
erywhere in M.

2.3. Simple verifications

We now show that the Euler–Lagrange (13) and its corresponding gradient descent flow (14) are the

extension for implicit targets of common equations derived in the literature for explicitly represented

manifolds. We also explicitly show that the flow equation guarantees, as expected from the derivations

above and in particular from the proof of Proposition 1, that if the initial datum is on the target manifold, it
will remain on it. We also express the second fundamental form of a manifold that is implicitly represented.

All these results will help to further illustrate the approach and verify its correctness.

2.3.1. Geodesics on implicit manifolds

It is well known, see [17,18,39], that arc-length parameterized geodesics on the manifold N satisfy the

harmonic maps PDE, and, therefore, Eq. (3). If we assume isotropic and homogeneous metric over N,

from Eq. (3) we obtain that (arc-length parameterized) geodesics must satisfy

€cþHw _c; _c
h i

rwðcÞ ¼ 0: ð19Þ

This important equation shows how to obtain geodesic curves on manifolds represented in implicit form.

2.3.2. Liquid crystals (N ¼ Sd�1, hypersphere)

One of the most popular examples of harmonic maps is given when the target manifold N is a hy-

persphere. That is, the map is onto Sd�1. In this case, the embedding (signed distance) function is simply

wð~yÞ ¼ k~yk � 1, ~y 2 Rd . From this, rwð~yÞ ¼~y=k~yk and ðHwð~yÞÞij ¼ dij=k~yk � yiyj=k~yk3. We also have that

Hwð~uðxÞÞ
o~u
oxk

;
o~u
oxk

" #
¼ dij

oui

oxk

ouj

oxk
� oui

oxk

ouj

oxk
uiuj;

since k~uk ¼ 1. In addition, uiðoui=oxkÞ ¼ 0, fact simply obtained taking derivatives with respect to xk. We

then obtain that ðoui=oxkÞðouj=oxkÞuiuj ¼ ððoui=oxkÞuiÞ2 ¼ 0, and
Pd

k¼1 Hwð~uðxÞÞ½ o~uoxk ;
o~u
oxk
� ¼
P

ikðou
i

oxk
Þ2 ¼

kJ~uðxÞk2F. Therefore, the corresponding diffusion equation from (14) is

o~u
ot

¼ D~uþ kJ~uk2F~u

which is exactly the well known gradient descent flow for this case. We have then verified the correctness of
the derivation in Proposition 1 for the case of unit spheres as target manifolds.

2.3.3. Diffusion of probabilities

In this case, N ¼ fx 2 Rd jxi P 0;
Pd

i¼1 xi ¼ 1g, which is not a closed manifold. However, by maximum

principle arguments, if the initial datum is on N, it will remain there for all time of smooth existence, see
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Section 2.5.1 and [37]. Then, we can formally consider wðxÞ ¼
Pd

i¼1 xi � 1=
ffiffiffi
d

p
, the signed distance from a

point x 2 Rd to the hyperplane fz 2 Rd j
Pd

i¼1 zi ¼ 1g, where the sign was selected accordingly to our choice

of ð1; . . . ; 1Þ=
ffiffiffi
d

p
as the unit normal to the hyperplane. We then obviously obtain rwðxÞ ¼ ð1; . . . ; 1Þ=

ffiffiffi
d

p

and HwðxÞ ¼ 0 for all x. Consequently, the evolution equation for this case is

~ut ¼ D~u

as expected [37].

2.3.4. Mapping restriction onto the zero level-set

We now explicitly show that if the initial datum belongs to the target surface given by the zero level-set

of w, then the solution to the diffusion flow (14) also belongs to this level-set. This further shows the

correctness of our approach.

Proposition 2. A regular solution to Eq. (14) holds wð~uðx; tÞÞ ¼ 0 8x 2 M; 8tP 0 of regularity.

Proof. If the initial datum is on fw ¼ 0g, then this property is true for t ¼ 0. Let us define

mðx; tÞ ¼ wð~uðx; tÞÞ. Then, 9

om
ot

¼ rwð~uÞ � o~u
ot

¼ D~u � rwð~uÞ þ
Xd
k¼1

Hwð~uÞ
o~u
oxk

;
o~u
oxk

" #

since w is a distance function. In addition, om=oxi ¼ rwð~uÞ � o~u=oxi, and then

o2m
ox2i

¼ Hwð~uÞ
o~u
oxi

 !
� o~u
oxi

þrwð~uÞ � o
2~u
ox2i

:

Adding on i ¼ 1; . . . ; d, it follows that om=ot ¼ Dm, meaning that m verifies the heat flow. In addition to

this, ðom=onÞjoM ¼ rxðwð~uðx; tÞÞÞ � n ¼ JT
~urwð~uÞ � n ¼ ðrwð~uÞÞTJ~un ¼ ðrwð~uÞÞT0 ¼ 0, due to the boundary

conditions on the evolution of ~u.
We have then obtained that m verifies the heat flow with Neumann boundary conditions and with zero

initial data. From the uniqueness of the solution, it follows that mðx; tÞ ¼ 0 8x 2 M; 8tP 0. �

2.3.5. Second fundamental form for implicit surfaces

If we compare the gradient descent flow (and Euler–Lagrange equation) we have obtained with the

classical one from harmonic maps, we see that the main difference is that Christoffel symbols for the target

manifold term appearing in the classical formulation have been replaced by a new term that includes the

Hessian of the embedding function. We obtained this by first embedding the target manifold and then

restricting the search for the minimizing map to the class of maps onto the zero level-set of the embedding

function. This approach can be followed to apply this framework to any related variational problem. We

now show how the same equation can be obtained by simply substituting the second fundamental form of

the explicit target manifold by the corresponding expression for an implicit target manifold. This will il-
lustrate how to apply our framework to more general PDEs, not necessarily gradient descent flow. The

basic idea is just to replace all the PDE components concerning the target manifold by their counterparts

for implicit representations.
9 The calculations that follow in the proof do not take into account that wmight fail to be differentiable at some points. This could be

simply addressed by a regularization argument. Moreover, we use the fact that there exists T > 0 such that ~u is regular in ½0; T Þ.
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In [30] (p. 150) it is shown that the scalar second fundamental form h at a point p of a hypersurface S can

be written in the form

hðpÞðV ;W Þ ¼ HwðpÞ½V ;W �
krwk2

for V ;W 2 TpS. According to [30] (p. 139) the vectorial second fundamental form is given by

IIðpÞðV ;W Þ ¼ hðpÞðV ;W Þ rw
krwk

From (18) and what we have just seen it is obvious that the implicit version of the harmonic map Euler–

Lagrange is (13).

As stated before, the implicit representation of the target surface permits then to compute the second

fundamental form using differences on Cartesian grids, without the need to develop new numerical tech-
niques on polygonal grids.

From the result just presented, in order to transform a given PDE into its counterpart when the target

manifold is represented in implicit form, all that needs to be done is to re-write all the characteristics of the

PDE, concerning this target manifold, in implicit form. For completeness, in Appendix B we present basic

facts on calculus on implicitly represented hypersurfaces.
2.4. Explicit derivation of the diffusion flow

Here, we first proceed in a na€ıve way to obtain an equivalent formulation of the gradient descent flow

that will help in the numerical implementation. We assume we have a family f~uð~x; tÞgt of mappings from X
to N. For each t we define the harmonic energy of a member of the family as

EðtÞ ¼ 1

2

Z
X
kJ~uð~x;tÞk2F dx:

We then find a variation of the family such that EðtÞ decreases. To accomplish this we formally dif-

ferentiate the energy with respect to t. A simple computation yields

_EðtÞ ¼ �
Z
X

~ut � D~u dx:

Now, since ~uð~x; tÞ 2 N 8~x 2 X and 8t of smooth existence, one must have ~utð~x; tÞ 2 T~uð~x;tÞN. An ap-

propriate choice for ~ut would be

~ut ¼ PT~uð~x;tÞNðD~uÞ ð20Þ

since this makes _EðtÞ ¼ �
R
X k~utk

2
dx6 0.

The projection operator in (20), as we already know (see Appendix B), can be expressed in a very simple

form using w (the signed distance function to N),

PT~pNð~vÞ ¼~v�~v � rwðpÞrwðpÞ: ð21Þ

Now, it should happen that (20) is equivalent to (14). We show this in Section 5.
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2.5. Remarks on the solutions of the diffusion flow

In previous subsections we have derived novel equations for PDEs mapping into target manifolds. We
complete the work of this section with relevant results from the literature on the mathematical correctness

of these equations.

The well-posedness of these diffusion problem with Neumann boundary conditions is addressed in

[24,35], where the following results are obtained, here included for completeness.

Theorem 1. For a given C1 mapping ~u0 : M ! N � Rnþ1 with o~u0=on ¼ 0 on oM and for every

2þ dimðMÞ < p < þ1 there exists an � > 0 (depending on ~u0) and a mapping ~u : M ! N of class

Lp
2ðM� ½0; ��;Rnþ1Þ. 10 Moreover, ~u is unique and C1 except at the corner oM� f0g.

Theorem 2. Let ðM; gÞ and ðN; hÞ be compact Riemmanian Manifolds with convex boundary. Let

~u : M� ½0;xÞ ! N be a maximal solution of the diffusion problem with initial value a C1 mapping~u0,
11 with

v0,ke½~u0�kL1 > 0. Let r 2 R be such that RicM P � r
2
g, 12 and RP 0 such that all sectional curvatures of N

are not greater than R=4. Then,
1. In the case r þ Rv0 > 0

(a) if R > 0 then

xP 1
r logð1þ r

Rv0
Þ when r 6¼ 0;

xP 1
Rv0

when r ¼ 0

(

(b) if R ¼ 0 then x ¼ þ1.

2. In the case r þ Rv0 6 0, x ¼ þ1.
2.5.1. Maps into open surfaces

So far, we have only addressed the case when the target surface is closed (zero level-set). We now briefly
deal with open surfaces. We show, following classical results, that when the map~u is evolving according to

the flow in Section 2.1.1, the set CðtÞ,f~uðx; tÞ; x 2 Mg remains inside the initial convex-hull of

C0,f~u0ðxÞ; x 2 Mg 8tP 0. This property is basically a consequence of the maximum principle. In the

actual computations, this might of course be violated due to numerical errors, and we will later discuss how

to correct for this as well.

Let us first motivate the general result presented below for the planar case. Assume that the target

manifold N is flat, for example Rk (we still assume that the domain manifold M is flat). Let ~uðx; tÞ solve
o~u=ot ¼ D~u for x 2 M and tP 0, and ðo~u=onÞjoM ¼ 0. Let N be a convex set of Rk with smooth boundary
(this guarantees that the distance function is also smooth almost everywhere, see [39] for a formal state-

ment), and n the signed distance function to this set (positive outside and negative inside). Define

gðx; tÞ,nð~uðx; tÞÞ. Then, it follows that og=ot � Dg ¼ �
Pk

i¼1 Hnðo~u=oxk; o~u=oxkÞ. 13 Since N is convex, so it

is n. Then, the Hessian of n is positive semi-definite, meaning that og=ot � Dg6 0. Following the scalar
10 L
p
2ðM� ½0; ��;Rnþ1Þ is the space of functions f : M ! Rnþ1 such that for every i ¼ 1; . . . ; nþ 1, rMf i, HM

f i and of i

ot are all in

L2ðM� ½0; ��Þ.
11 A solution~u : M� ½0;xÞ ! N of the diffusion problem is maximal if it cannot be extended to be a solution on M� ½0;xþ �Þ for
any � > 0 or if x ¼ þ1.
12 RicM stands for the Ricci curvature tensor of M.
13 Note once again that we are omitting details regarding the correct handling of the distance function, since it is not everywhere

differentiable. However, by a regularization argument, the same conclusion holds.
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maximum principle, maxfx2M;tP 0g gðx; tÞ ¼ maxfx2Mg gðx; 0Þ. If f~u0ðxÞ; x 2 Mg � N, which is equivalent to

0P nð~u0ðxÞÞ ¼ gðx; 0Þ, we obtain that gðx; tÞ6 0, and ~uðx; tÞ 2 N for all x 2 M y tP 0.

The general result now presented is from [24]. We quote it here for completeness. 14

Theorem 3. Let ~uðx; tÞ be the solution of (14) at time t. Let us assume that for t6 T this solution remains

smooth. Let I0 ¼~u0ðXÞ, and I0 be the convex hull of I0. Then, for ðx; tÞ 2 X� ½0; T �, ~uðx; tÞ 2 I0.
3. Maps into implicit submanifolds

Here, we present a modification to the diffusion flow introduced above, which is well suited to diffuse

data that belongs to a certain submanifold C of N ¼ fw ¼ 0g. We specify this submanifold by

C ¼ fw ¼ 0g \ fU ¼ 0g, where we select U : RN ! R to be the signed intrinsic (to N) distance function to

fU ¼ 0g, satisfying (see Appendix B for the notation)

1 ¼ krwUk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krUk2 � jrw � rUj2

q
: ð22Þ

In addition we specify the condition

UðpÞ ¼ 0 for p 2 KC;

where

KC ¼ fx 2 RN jx ¼ p þ arwðpÞ with p 2 C; a 2 Rg

is the cone intersecting fw ¼ 0g at C and director rays normal also to fw ¼ 0g.
The reason for specifying the submanifold this way is that we cannot proceed as before, simply speci-

fying the submanifold as the zero level set of its Euclidean distance function. This is because such function

would be singular precisely on the submanifold.

As we show in Appendix B, the Hessian of U, intrinsic toN evaluated at the point p, and restricted to act

on vectors that belong to TpN, can be written in the form

HN
U ðpÞ ¼ HUðpÞ � KðpÞHwðpÞ; ð23Þ

where KðpÞ ¼ rUðpÞ � rwðpÞ. This expression will be used below.

We now derive the Euler–Lagrange corresponding to this additional mapping restriction. For this, we

use a technique slightly different that the one in Section 2.1.

Proposition 3. The Euler–Lagrange of the functional (1), when the solution is restricted to the implicitly

represented submanifold C defined above, is given by

D~uþ
X
k

Hwð~uÞ
o~u
oxk

;
o~u
oxk

" # !
rwð~uÞ þ

X
k

HN
U ð~uÞ o~u

oxk
;
o~u
oxk

" # !
rwUð~uÞ ¼ 0: ð24Þ

Proof. Let us assume that~u achieves a minimum of the energy functional (1). We must build a variation of~u
that belongs to C, the intersection of the zero level-sets of two embedding functions (and not just of w as

before). It is clear that one such variation would be
14 The proof of this result has a lot of interest in itself since it can be carried out within the implicit framework introduced in this

paper.
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~wk ¼ PC ~u
�

þ k~v
�
:

We are interested only on those terms of e½~wk� that do not vanish after the
PN

i¼1ðo=oxiÞð�Þjk¼0 operation,

namely those linear in k. Therefore, we only preserve those terms in ~wk which are constant or linear in k:

~wk ’~uþ kPT~uCð~vÞ:
We write

PT~uCð~vÞ ¼ PT~ufw¼0g ~v
n

� ~v � rwUð~uÞ
� �

rwUð~uÞ
o
¼~v� ~v � rwUð~uÞ

� �
rwUð~uÞ � ð~v � rwð~uÞÞrwð~uÞ;

where rwUð~uÞ ¼ rUð~uÞ � Kð~uÞrwð~uÞ is the gradient of U intrinsic to fw ¼ 0g. In this way we find that (up

to a first order in k)

e½~wk� ’ e½~u� þ k
XN
i¼1

~uxi � ~vxi

"
�~vxi � rwUð~uÞrwUð~uÞ �~v � orwUð~uÞ

oxi
rwUð~uÞ

�~v � rwUð~uÞ
orwUð~uÞ

oxi
�~vxi � rwð~uÞrwð~uÞ �~v � orwð~uÞ

oxi
rwð~uÞ �~v � rwð~uÞ orwð~uÞ

oxi

#
: ð25Þ

Since Uð~uÞ ¼ wð~uÞ ¼ 0, differentiating with respect to xi we obtain thatrUð~uÞ �~uxi ¼ rwð~uÞ �~uxi ¼ 0, and

therefore

rwUð~uÞ �~uxi ¼ 0:

The expression (25) can be simplified to obtain

e½~wk� ’ e½~u� þ k
XN
i¼1

~uxi � ~vxi

"
�~v � rwUð~uÞ

orwUð~uÞ
oxi

�~v � rwð~uÞ orwð~uÞ
oxi

#
:

Moreover, since

orwUð~uÞ
oxi

¼ HU~uxi �
oK
oxi

ð~uÞrwð~uÞ � Kð~uÞHw~uxi

we have

orwUð~uÞ
oxi

�~uxi ¼ HN
U ½~uxi ;~uxi �:

With all this in mind we find that (again, up to first order in k)

e½~wk� ’ e½~u� þ k
XN
i¼1

~uxi � ~vxi
h

�~v � rwUð~uÞHN
U ½~uxi ;~uxi � �~v � rwð~uÞHwð~uÞ½~uxi ;~uxi �

i
:

Using this expression, after imposing that ðo=okÞjk¼0

R
X e½~wk� dv ¼ 0 for every~v, we find that the Euler–

Lagrange is

D~uþ
X
k

Hw
o~u
oxk

;
o~u
oxk

" # !
rwð~uÞ þ

X
k

HN
U

o~u
oxk

;
o~u
oxk

" # !
rwUð~uÞ ¼ 0: ð26Þ

an expression utterly predictable. �
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3.1. Simple verification

As for the case of closed manifolds, we now verify that in fact the gradient descent corresponding to the
Euler–Lagrange (26) keeps ~u in fw ¼ 0g \ fU ¼ 0g.

Proposition 4. If ~u is a solution to the gradient descent flow corresponding to Eq. (26), then ~u maps into the

submanifold fw ¼ 0g \ fU ¼ 0g.

Proof. We just need to show that both mðx; tÞ,wð~uðx; tÞÞ and lðx; tÞ,Uð~uðx; tÞÞ are always zero. The idea is
the same one we used in Section 2.3, it is enough to show that both m and l satisfy the heat equation with

adiabatic boundary conditions:

[w] We have

mt ¼ rw � D~uþ
X
k

Hw
o~u
oxk

;
o~u
oxk

" #

since rw ? rwU. Also

Dm ¼ rw � D~uþ
X
k

Hw
o~u
oxk

;
o~u
oxk

" #

and

mt ¼ Dm:

[U] We have

lt ¼ rU � D~uþrU � rwU
X
k

HN
U

o~u
oxk

;
o~u
oxk

" # !
þ K

X
k

Hw
o~u
oxk

;
o~u
oxk

" # !
:

From rU � rwU ¼ rwU � rwU ¼ krwUk2 ¼ 1, the above equation continues as

¼ rU � D~uþ
X
k

HN
U

o~u
oxk

;
o~u
oxk

" # !
þ K

X
k

Hw
o~u
oxk

;
o~u
oxk

" # !

¼ rU � D~uþ
X
k

HU
o~u
oxk

;
o~u
oxk

" # !
:

Also

Dl ¼ rU � D~uþ
X
k

HU
o~u
oxk

;
o~u
oxk

" # !

and then

lt ¼ Dl

Finally, it is easy to see that both m and l satisfy Neumann boundary conditions. Since at t ¼ 0 both

functions are zero, we must have that they are identically zero. �
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3.2. Example

We now present an example of the evolution corresponding to the above equation, where the target
manifold is the circle S1 � R3. We will prove, by direct calculation, that the evolution PDE corresponding

to (26) reduces to the expected one from the classical theory of harmonic maps (liquid crystals).

Let C ¼ fðx; y; zÞ 2 R3jx2 þ y2 ¼ 1; z ¼ 0g. We will then choose the representation C ¼ fðx; y; zÞ 2
R3jz ¼ 0g \ fðx; y; zÞjx2 þ y2 ¼ 1g. We select N ¼ fðx; y; zÞ 2 R3jz ¼ 0g, that is, wðx; y; zÞ ¼ z and therefore

rw ¼~e3 ¼ ð0; 0; 1Þ. The set KC is then given by fðx; y; zÞjx2 þ y2 ¼ 1g. In Fig. 1 we depict this situation.

Now we solve (22) with the condition UjKC
¼ 0. Observe that rwU ¼ ðUx;Uy ; 0Þ. Then, the PDE we must

solve reads U2
x þ U2

y ¼ 1, and the solution that satisfies the boundary condition above is

Uðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 1. Let q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. One computes that rUðx; y; zÞ ¼ ðx; y; 0Þq�1. We can now find

the components of HU, the Hessian matrix of U at the point ðx; y; zÞ, to obtain Uxx ¼ q�1 � x2q�3,
Uyy ¼ q�1 � y2q�3, Uxy ¼ Uyx ¼ �xyq�3, and Uzx ¼ Uxz ¼ Uzy ¼ Uyz ¼ Uzz ¼ 0. Since Hw ¼ 0 we obtain

HN
U ðx; y; zÞ ¼ HUðx; y; zÞ.
The next step is to write Eq. (26) in this specific case. The first observation is that, again, since Hw ¼ 0,

the time evolution corresponding to (26) simplifies to

~ut ¼ D~uþ
X
k

HUð~uÞ ~uxk ;~uxk
h i !

rUð~uÞ:

For any vector ~v ¼ ðvx; vy ; vzÞ 2 R3, one has at the point ðx; y; zÞ, HU½~v;~v� ¼ v2xð1� x2Þ þ v2xð1� x2Þ�
2xyvxvy ¼ v2x þ v2y � ðxvx þ yvyÞ2.

It is also of great help knowing, from Section 3.1, that along the time evolution, both wð~uÞ ¼ 0 and

Uð~uÞ ¼ 0 if the initial datum is on C. This translates into q ¼ 1 everywhere in our expressions for HU and

rU. Let us write ~u ¼ ðU ; V ;W Þ. Then, since U 2 þ V 2 ¼ 1, differentiating with respect to xk we find

UUxk þ VVxk ¼ 0. We also have W ¼ 0.

Hence, HUð~uÞ½~uxk ;~uxk � ¼ U 2
xk
þ V 2

xk
� ðUUxk þ VVxk Þ

2 ¼ U 2
xk
þ V 2

xk
, and the time evolution equation reads

Ut ¼ DU þ ðkrUk2 þ krV k2ÞU ;

Vt ¼ DV þ ðkrUk2 þ krV k2ÞV ;
W ¼ 0;

8<
: ð27Þ
e3

N

CK

C

Fig. 1. Example of a mapping into S1 � R3.
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which we immediately recognize as the one corresponding to diffusion of maps into S1 (� R2, if we discard

the superfluous component W ), see for example Appendix A, Eq. (A.2).
4. Implicit domain manifolds and p-harmonic maps

For completeness, we present now the formulas corresponding to the case where both the domain and

target manifolds are represented in implicit form (with the embedding functions being the corresponding

signed distance ones). Deriving these formulas is straightforward using the framework here presented when

combined with the work in [5]. We also show the corresponding flows for p-harmonic maps.

4.1. p-Harmonic maps

We still assume M to be planar. The energy density (2) (but not the dependence of the energy on its

density) is redefined as follows. For every p 2 ½1;þ1Þ let

ep½~u�,
1

p
kJ~ukpF:

A simple application of variational calculus leads to conclude that 15

~ut ¼ p1�
2
pPrwð~uÞ r � ðep½~u�Þ1�

2
pJT

~u

� �� �
: ð28Þ

Note that if p < 2 difficulties are expected to arise, see [43] and the references therein.

4.2. Generic (implicit) domain manifolds

Let M ¼ fx 2 Rm : /ðxÞ ¼ 0g, where /ð�Þ is the signed distance function to M. Then the diffusion is

given by

~ut ¼ r � Pr/J
T
~u

� �
þ

X
k;r

Hw½~uxr ;~uxk � Pr/

� �
kr

 !
rw: ð29Þ

The whole deduction rests upon the redefinition of the energy (1) and its density (2). Now we should define

the energy density to be

e/½~u�,
1

2
kJ/

~u k
2

F;

where the intrinsic Jacobian of ~u can be written as (see Appendix B for more details) J/
~u ¼ J~uPr/.

The new definition for the energy should be 16

E½~u�,
Z
Rm

e/½~u�dð/ðxÞÞ dx: ð30Þ
15 The divergence operator convention (for a matrix A) we have used is r � A ¼ ðr �~Av1 j � � � jr �~Avr Þ, where ~Avi stands for the ith
column of A. That is, we apply a columnwise divergence.
16 We have already taken into account that kr/k ¼ 1.
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Comparing (29) with (18), we can infer the implicit form of the Christoffel symbols 17

Cl
ijð~uÞ ¼

o2w
oui ouj

ð~uÞ ow
oul

ð~uÞ:
4.3. Generic (implicit) domain manifold and p-harmonic maps

Using both generalizations presented above, we arrive at the following formula with a bit more com-

putational effort

~ut ¼ p1�
2
pPrwð~uÞ r � ðe/;p½~u�Þ1�

2
pPr/J

T
~u

� �� �
; ð31Þ

where

e/;p½~u�,
1

p
kJ/

~u k
p
F:
4.4. Diffusion of tangent and normal directions

Throughout this section we will assume dimðMÞ ¼ dimðNÞ. Assume we want to diffuse intrinsic vec-
torial data constrained to be a direction (unit norm) and to be either normal or tangent to the domain

manifold, e.g. [5]. This is an extremely important case, for example to denoise principal directions and

normal vectors. We now derive these equations, which to the best of our knowledge have not been reported

before even for explicit manifolds.

To achieve this goal, we minimize the functional (30) taking a variation of the form (assume~u minimizes

the energy functional while satisfying both k~uk ¼ 1 and Pð~uÞ ¼~u)

~ukðxÞ,
~uþ kPð~vÞ
k~uþ kPð~vÞk ;

where~v : M ! Rd is smooth and P is either PTxM or PNxM (projection onto the tangent or normal space,
respectively). Let ~w ¼ Pð~vÞ. Then it follows easily that

dE½~uk�
dt

�����
k¼0

¼ �
Z
Rm

D/~u
n

þ 2e/½~u�~u
o
�~wdð/ðxÞÞ dx:

Imposing ðdE½~uk�=dtÞjk¼0 ¼ 0 for all v implies

P D/~u
�

þ 2e/½~u�~u
�
¼ P D/~u

� �
þ 2e/½~u�~u ¼ 0

Finally, the diffusion flow obtained is

o~u
ot

ðx; tÞ ¼ Px D/~uðx; tÞ
� �

þ 2e/½~u�ðx; tÞ~uðx; tÞ: ð32Þ
17 Of course gij ¼ ðPr/Þijð¼ g�1
ij Þ. Then, it is nice to observe (although formally incorrect) that since Pr/r/ ¼ 0, then the metric

g : Rd ! Rd�d has eigenvalue þ1 in the direction given by r/ thus prohibiting intermingling of information between adjacent level

sets of /.
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Note that if the PDE (32) admits a smooth solution until time T , 18 and if (for instance) we are dealing

with tangent directions diffusion, the function f ðx; tÞ,r/ðxÞ �~uðx; tÞ satisfies ftðx; tÞ ¼ 2e/½~u�f ðx; tÞ.
Therefore,

f ðx; tÞ ¼ f ðx; 0Þe2
R t

0
e½~u�ðx;tÞ dt

thus verifying that if r/ðxÞ �~uðx; 0Þ ¼ 0 then r/ðxÞ �~uðx; tÞ ¼ 0 for t6 T . We also want to check whether

k~uðx; tÞk ¼ 1 8ðx; tÞ. Let

F/½~u�ðtÞ,
1

2

Z
Rd

kJ~uk2Fdð/ðxÞÞ dx:

Then _F/½~u�ðtÞ ¼ �
R
Rd ~ut � D/~udð/ðxÞÞ dx. Since both k~uk ¼ 1 and Pð~uÞ ¼~u (so Pð~utÞ ¼~ut since P does not

depend on t) must hold, and in order to make _F/½~u�ðtÞ non-positive we choose

~ut ¼ PPT~ufk~uk¼cgD/~u; ð33Þ

where PT~ufk~uk¼cg ¼ I�~u=k~uk~uT=k~uk for any c > 0.

Note that the above evolution indeed forces ~uðx; tÞ to satisfy both imposed conditions. Let~v : Rd ! Rd

be such that Pð~vÞ ¼~0. Then ð~v �~uÞt ¼~v �~ut ¼~v �PPT~uS
d�1D/~u ¼ PT~v �PT~ufk~uk¼cgD/~u ¼ 0, since the projec-

tion matrix is symmetric, and just using this we have ðð1=2Þk~uk2Þt ¼~u �~ut ¼~u �PT~ufk~uk¼cg ¼ 0 trivially.

Finally, using k~uk ¼ 1 and carrying out some computations in a way similar to Section 5, 19 one can prove
that (33) reduces to (32).
5. Numerical implementation and examples

We now discuss the numerical implementation of the flows previously introduced. Since the target

manifold is now implicitly represented, we can basically use classical, well studied, numerical techniques on

Cartesian grids. In other words, the framework here introduced permits the use of already existing nu-
merical techniques, thereby enjoying their available analysis results. This is a key concept, instead of

working on the development of new numerical schemes for meshes, the use of implicit representations

following our framework brings us back to classical schemes. Moreover, examples like those in Fig. 5 have

not been reported in the literature yet, since prior to our approach all PDEs for mapping three-dimensional

meshes used projections as intermediate steps. Therefore, the work here proposed, when combined with [5],

not only permits to use classical numerical schemes to solve PDEs and variational problems for surfaces, it

is also an enabling technology for general maps.

Note that although the flows derived in this paper guarantee that the map remains on the target (sub-
manifold), numerical errors can move it away from it, requiring a simple projection step (see the projection

equations presented before in this paper). In particular, when dealing with submanifolds, although the

evolution equations also guarantee that the solution will remain inside the convex hull, due to numerical

discretization,~u could be taken outside of it during the evolution. In order to numerically project it back,

we need to have a distance function to this convex hull defined on the implicitly defined target manifold. In

[32] we have shown how to computationally optimal compute such a distance function on implicitly defined

manifolds, and this is the technique used for this projection into the convex hull.
18 Note that we might be subject to the topological obstruction given by the Hairy Ball Theorem when dimðMÞ ¼ dimðNÞ is odd.
19 The main difference is that now one must take into account the Laplace–Beltrami expressed ‘‘implicitly’’, see Appendix B for more

details on intrinsic differential operators within the implicit framework.
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An explicit scheme can be devised to implement (29) (recall that this is the extension, for general domain

manifolds, of the Eq. (14) derived in Section 2). However, following [14], it turns out that it is more

convenient to implement the mathematically equivalent evolution derived in Section 2.4. More specifically,
the equivalent evolution is (see Eq. (21))

ou
ot

¼ Du� ðDu � rwÞrw: ð34Þ

That both evolutions are equivalent is easy to see.

Proposition 5. Eq. (34) is equivalent to the mapping into implicit surfaces flow (14).

Proof. One has that f ðx; tÞ,wð~uðx; tÞÞ ¼ 0 8ðx; tÞ 2 X� Rþ [ f0g for ~uð�; �Þ satisfying (14). Now, differen-

tiating f with respect to xi we obtain

rwð~uÞ �~uxi ¼ 0:

Differentiating again with respect to xi,

Hw½~uxi ;~uxi � þ rw �~uxixi ¼ 0:

Summing for all i,X
i

Hw½~uxi ;~uxi � þ rw � D~u ¼ 0

and using the previous expression we derive (34) from (14). �
5.1. Numerical scheme

All the coding was done using Flujos as the main core (see [21]) and VTK (see [52]) for visualization

purposes. Note that for visualization purposes only, the surfaces are triangulated at the end, via marching

cubes as implemented in [52]. This is not at all an intrinsic component of our framework, and many ap-

plications (e.g. brain warping and regularization problems) are interested in the values of the solution ~u,
without the need for visualization of the target surface.

All the examples below were carried based in Eq. (31). Once again, the numerical implementation is
straightforward (at least when p ¼ 2), since it is basic Cartesian numerics, and full details and analysis can

be found in the standard literature in numerical analysis. We select a particular efficient scheme from the

literature, while others (including implicit or semi-implicit schemes) could be used as well.

We use forward time discretization (explicit scheme), and for the spatial discretization, we used the

following well-known recipe. To spatially discretize

ftðx; tÞ ¼ r � ðKðxÞrf ðx; tÞÞ ð35Þ

(KðxÞ is a symmetric positive semi-definite matrix), we consider backward approximation of the divergence

and a forward approximation of the gradient. Let us explain how this applies in our situation, and for that
we assume p ¼ 2 in (31). Then, the equation we have to implement is

~utðx; tÞ ¼ Prwð~uðx;tÞÞ r � Pr/ðxÞ JT
~u ðx; tÞ

� �� �� �
: ð36Þ

If we do not take into account the outer projection matrix, every coordinate of ~u evolves according to

uitðx; tÞ ¼ r � Pr/ðxÞruiðx; tÞ
� �



Fig. 2. Diffusion of a noisy texture map (left) onto an implicit sphere (right). (This is a color figure. See the journal web page for the

color version.)
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having for each component the same structure than the model evolution (35). We then borrow the above

discretization for our evolution. If we consider the coupling among different uis imposed by the projection

matrix Prwð�Þ, we see that we still preserve numerical stability since this matrix is positive semidefinite and

has spectral radius not greater than 1. 20 In more detail, it can be shown after some calculations (see [23,45])

that for the scheme (p now denotes a position over the grid)

~vnþ1
p ¼~vnp þ DtPð~vnpÞ r� � QðpÞrþ~vnp

� �� �
the stability condition is of the form (k ¼ Dt=ðDxÞ2)

k6 min
p;u

SðpÞ
qðPðuÞÞmaxfS2ðpÞ;D2ðpÞg

or

k6
1

maxu qðPðuÞÞ
min

p

SðpÞ
maxfS2ðpÞ;D2ðpÞg

� 

;

where qðPðpÞÞ stands for the spectral radius of the matrix PðpÞ, SðpÞ ¼
P

ijðqijðpÞ þ qijðp � Dx~eiÞÞ, and
DðpÞ ¼

P
ijðqijðpÞ � qijðp � Dx~eiÞÞ. In our case we may admit Dð�Þ to be small compared with Sð�Þ (given the

identification Q $ Pr/) when Dx is small. This can be easily related to the curvatures of f/ ¼ 0g giving a

condition on the sampling of the distance function (/) representing the domain manifold. This condition

mainly means that we require a fine enough sampling as to guarantee that the change in the normals to the

level surfaces of / is small between adjacent grid points. This condition is obviated when the domain

manifold is planar. So the stability condition becomes

k6
1

maxu qðPðuÞÞmaxp SðpÞ
:

20 Note that k~vk2 PPrw½~v;~v� ¼ kvk2 � jrw �~vj2 P 0 for all~v. We have used that / is a distance function.



Fig. 3. Diffusion of a noisy texture map onto an implicit teapot. We show two different views (noisy on the top and regularized on the

bottom). (This is a color figure. See the journal web page for the color version.)
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Since by Cauchy–Schwartz�s inequality (and the aforementioned assumption on the change of r/ between

adjacent grid points) 2d (in practise) upper-bounds SðpÞ, remembering the fact that qðPðpÞÞ6 1, we arrive

at k6 1=2d. Note that if a more careful implementation is desired, good choices are ADI or AOS schemes,

see [53].
All derivatives in Prwð�Þ and Pr/ð�Þ were approximated by central differences. An interpolation scheme

had to be used since the evaluations of Prwð�Þ in the above equation are at positions given by ~uðx; tÞ, po-
sitions not necessarily on the underlying grid. We used linear interpolation for this purpose.

Note that as done in [5], when the domain manifold is also implicitly represented, the values of the map

on it are, from time to time (every 5 iterations, for example), extended to its surrounding offset due to

stability considerations, we call this process ‘‘extension evolution’’. This process is well known in the area of

implicit surfaces. Also, as explained before, due to numerical discretization, the discretely computed so-

lution map can be taken out of the target manifold during the evolution. In this paper, we simply project it



Fig. 4. Diffusion of a texture map for an implicit teapot (noisy on the top and regularized on the bottom). A chess board texture is

mapped.
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back at every iteration. We have seen that this projection is a trivial step due to the fact that the embedding

is a distance function. It is quite straightforward to show that the results reported in [1] can be extended for

our equations as well, at least for convex hypersurfaces (additional numerical work in this area has been
performed by E and Wang [14]). This guarantees then that the projection step does not introduce numerical

problems. Further analysis of this projection step will be reported elsewhere.

This provides the whole numerical scheme for this particular equation using our framework. To resume,

we implement (36) with simple finite differences schemes (central, forward, and backward differences). At

every numerical iteration, the values of~u are projected to the zero level-set to correct for possible numerical

errors (projection which becomes trivial since the embedding function is a distance function). If the domain

manifold is not planar, every k (k ¼ 5 in our experiments) iterations we run a certain number of iterations of

the extension evolution, [5]. When needed, we interpolate the values of the grid onto the underlying surface
by simple linear interpolation. All these steps are classical, simple to implement, based on well known

numerical schemes, and are generic and not designed just for a particular flow.



Fig. 5. Diffusion of a random map from an implicit torus to the implicit bunny. In blue are marked those points of the bunny�s surface
pointed by the map at every instant. Different figures correspond to increasing instances of the evolution, from top to bottom and left

to tight. We show the map at 17 of 100 iterations performed to the initial map with a time step of .01. We used the 2-harmonic heat flow

with adiabatic conditions. (This is a color figure. See the journal web page for the color version.)
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5.2. Examples

In all the examples below, the domain manifold M is either the Euclidean space R2 or an implicit
torus. The target manifold N is an implicit surface in R3, that is, the zero level-set of w : R3 ! R, w
being a signed distance function (this is of course also the case when the surface is a sphere, w being as in

Section 2.3).

In order to present interesting examples we construct texture maps, add noise to them, and then diffuse

them using our framework. LetS be the surface onto which we want to map a given (planar) image defined

in a subset D � R2. Then, the texture map is a map ~T : S ! D. Once the map is known, we inverted it to

find a map ~u0 : D ! S. Then, we built up the noisy map ~u : D ! S defined by

~uðxÞ ¼ PS ~u0ðxÞ
�

þ~nðxÞ
�
;

where~n : D ! S is random map with small prescribed power r. We then feed the evolution (14) with~u as
initial condition, and Neumann boundary conditions. After a certain number of steps, we stop the evo-

lution, invert the resulting map, and use it as a texture map to paint the surface with a certain texture. 21

As a means of finding a suitable ~T we have implemented the work in [50] (a multidimensional scaling

approach), combined with the technique developed in [32] for computing distances on implicit surfaces. In

all the steps just described there are some minor implementation details, mainly regarding interpolation

tasks, that we omit for the sake of clarity.

In Figs. 2–4 we then denoise vectors from the plane R2 to a three-dimensional surface defined as the zero

level-set of w : R3 ! R and map a texture image to the surface using the obtained map. Note that the map is
the one being processed, not the image itself.

We also show an example of diffusion of random maps from an implicit torus to the implicit bunny

model, see Fig. 5. As expected from the theory, when evolving this set with the harmonic flow, the set

converges to a unique point. This particular example of mapping a given three-dimensional surface to

another one was previously addressed via artificial, distortion introducing, projections to the plane or

sphere when the surface was represented as meshes [46].
6. Conclusions

In this paper we have shown how to implement variational problems and partial differential equations

onto general target surfaces. We have also addressed the case of open target surfaces and sub-manifolds.

The key concept is to represent the target (sub-)manifolds in implicit form, and then implement the

equations in the corresponding embedding space. This framework completes the work with general domain

manifolds reported in [5], thereby providing a complete solution to the computation of maps between

generic manifolds.
We are currently using this framework to map two generic surfaces for warping (without intermediate

projections onto the plane), and to develop numerical techniques for high order flows on and onto surfaces.

To complete the general computational framework here introduced, a detailed numerical analysis on

comparison with mesh based techniques is to be performed. For the work on implicit domain manifolds

introduced in [5], some of this analysis was recently performed in [2]. We plan to perform similar tests for

implicit target manifolds and results will be reported elsewhere.
21 Note that we are not proposing this as a complete texture mapping alternative, it is just to provide an illustrative example.
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Appendix A. Boundary conditions for the gradient descent flow

We now justify the use of Neumann boundary conditions for the gradient descent flow in Section 2.1.1.

In the scalar case, one has the evolution problem

Itðx; tÞ ¼ DIðx; tÞ; x 2 M; tP 0;
Iðx; 0Þ ¼ I0ðxÞ; x 2 M;
rI � njoM ¼ 0:

8<
: ðA:1Þ

We observe that the quantity rðtÞ,
R
M
Iðx; tÞ dMv remains constant,

_rðtÞ ¼
Z
M

Itðx; tÞ dMv ¼
Z
M

DIðx; tÞ dMv ¼
Z
M

r � ðrIÞ dMv ¼
Z
oM

rI � n dMs ¼ 0

thereby imposing the boundary conditions.

One wonders which quantity is preserved thru time by the flow in the general case, when imposing the
boundary condition (15). We illustrate this for the particular case of N ¼ S1. In this case, the evolution

equations are given by (see also Section 2.3)

Xt ¼ DX þ ðkrXk2 þ krY k2ÞX ;

Yt ¼ DY þ ðkrXk2 þ krY k2ÞY :

�
ðA:2Þ

The Neumann boundary conditions for this case are written as

rX � n ¼ rY � n ¼ 0 in oM:

Transforming to polar coordinates ðq; hÞ one finds that the evolution equations (for smooth initial data,

and at least for some time) are (see also [38])

ht ¼ Dh;
qt ¼ 0

�
ðA:3Þ

with boundary conditions

rh � n ¼ 0 in oM:

Again one finds that
R
M
hðx; tÞ dMv is constant.

In the most general case, when the target manifold is arbitrary, one might guess that the intrinsic

barycenter 22 of the map is preserved through time, since that�s exactly what the particular cases given
22 The intrinsic barycenter G of the map~u : X ! N is defined by G ¼ argminp2Nð1=2Þ
R
X d

2
Nðp;~uðxÞÞ dx. See [12] for more details on

the barycenter.
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above show us. However, to the best of our knowledge, there is not such a result in the literature of

harmonic maps, and the conservation of the barycenter is only obtained when constraints are added. The

examples discussed above still motivate the use of Neumann boundary conditions.
Appendix B. Implicit calculus

We now present basic facts about differential calculus on implicitly represented surfaces. For more in-

formation see for example [4,10,31].

We have a smooth scalar function f : Rd ! R, and a smooth vector field~k : Rd ! RD (d and D are not
necessarily equal). The manifold onto which the calculus is to be done is represented as S ¼ fw ¼ 0g, for
wð�Þ the signed distance function to S.

All the ideas of differentiation can be obtained from simple considerations related to the restriction of the

function to a geodesic curve living in the manifold. We consider an arc-length parameterized geodesic curve

c : ½��; �� ! S such that cð0Þ ¼ p is a given point of S. We denote F ðtÞ ¼ f ðcðtÞÞ and ~KðtÞ ¼~kðcðtÞÞ.

B.1. Implicit gradient

We differentiate once F ðtÞ to obtain _F ð0Þ ¼ rf ðpÞ � _cð0Þ. Since _cð0Þ 2 TpS (the tangent plane), we find

the implicit gradient of f at p to be rSf ðpÞ ¼ rf ðpÞ � rf ðpÞ �~nðpÞ~nðpÞ, where~nðpÞ stands for the normal

to the manifold at p. Since we can also write ~nðpÞ ¼ rwðpÞ, we obtain

rSf ðpÞ,rf ðpÞ � ðrf ðpÞ � rwðpÞÞrwðpÞ:

We often use the alternative notation rwf since the definition can be applied to any level set of w. Note

that we can write rwf ¼ Prwrf , where

Prw, I�rwrwT:
B.2. Implicit Hessian

If we compute the second derivative of F we find that €F ð0Þ ¼ rf ðpÞ � €cð0Þ þHf ½ _cð0Þ; _cð0Þ�. Now, we know

that an arc-length parameterized geodesic curve of S must satisfy the harmonic maps differential equation

€cþHwðcÞ½ _c; _c�rwðcÞ ¼ 0:

We then find that €F ð0Þ ¼ ðHf ðpÞ � rf ðpÞ � rwðpÞHwðpÞÞ½ _c; _c�. Again we have that _c 2 TpS, and we find the

implicit Hessian of f at p to be

HS
f ðpÞ,PwhfPw;

where

hf ,Hf ðpÞ � rf ðpÞ � rwðpÞHwðpÞ:

We will frequently use the alternative notation H
w
f ðpÞ.

B.3. Implicit Laplacian

From the previous computation it is an easy exercise to compute the implicit Laplacian or
Laplace–Beltrami of f since by definition DSf ¼ tracefHS

f g.
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For any pair of symmetric matrices A and B one has that tracefABAg ¼
P

i

P
j

P
k aijaikbjk and

tracefABg ¼
P

i

P
j aijbij. Now we have that PwBPw ¼ BþrwrwTBrwrwT �rwrwTB� BrwrwT.

We then obtain

tracefPwBPwg ¼ tracefBg þ
X
i

X
j

X
k

wxiwxjwxiwxk bjk � 2
X
i

X
j

wxiwxjbij

Recalling that wð�Þ is a distance function, so that it satisfies krwk ¼ 1, we find

tracefPwBPwg ¼ tracefBg �
X
i

X
j

wxiwxjbij ¼ tracefBg � B½rw;rw�:

We conclude the reasoning by taking B ¼ hf

tracefHS
f g ¼ tracefhf g � hf ½rw;rw� ¼ tracefhfg �Hf ½rw;rw�

since Hw½rw;rw� ¼ 0. Since tracefHf g ¼ Df � ðrf � rwÞDw, we find that

DSf ¼ Df � ðrf � rwÞDw�Hf ½rw;rw�:

It is interesting to observe how the expression just found for DSf coincides with the one obtained by

minimizing the intrinsic Dirichlet integral, 23

Dðf Þ, 1

2

Z
Rd

krSf k2dðwÞ dv

as is done in [5]. The authors showed that a smooth function f extremizing Dðf Þ must satisfy

r � ðrf � ðrf � rwÞrwÞ ¼ 0:

We should verify that this definition coincides with ours. This is accomplished as follows

r � ðrf � ðrf � rwÞrwÞ ¼ Df � ðrf � rwÞDw�rðrf � rwÞ � rw

¼ Df � ðrf � rwÞDw�Hf ½rw;rw� �Hw½rf ;rw�
¼ Df � ðrf � rwÞDw�Hf ½rw;rw� ¼ DSf ðaccording to our definitionÞ;

since Hw½rw; �� ¼ 0.
B.4. Vector calculus

• Implicit Jacobian: With the ideas developed before, we easily find (differentiating ~KðtÞ) that

JS
~k
,J~kPw:

• Implicit Divergence: Using the expression for the intrinsic Jacobian we write

rS �~k, traceðJ~kPwÞ

and
23 As one expects since this is the definition of harmonic functions.
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rS �~k,r �~k� J~k½rw;rw�:

It is useful to observe that rS �~k ¼ r �~k when ~kðxÞ 2 Txfw ¼ 0g:
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