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Abstract

Point clouds are one of the most primitive and fundamental manifold representations. A
popular source of point clouds are three dimensional shape acquisition devices such as laser range
scanners. Another important field where point clouds are found is in the representation of high-
dimensional manifolds by samples. With the increasing popularity and very broad applications
of this source of data, it is natural and important to work directly with this representation,
without having to go through the intermediate and sometimes impossible and distorting steps of
surface reconstruction. A geometric framework for comparing manifolds given by point clouds
is presented in this paper. The underlying theory is based on Gromov-Hausdorff distances,
leading to isometry invariant and completely geometric comparisons. This theory is embedded
in a probabilistic setting as derived from random sampling of manifolds, and then combined with
results on matrices of pairwise geodesic distances to lead to a computational implementation
of the framework. The theoretical and computational results here presented are complemented
with experiments for real three dimensional shapes.
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nieŕıa Eléctrica, Universidad de la República, Montevideo, Uruguay, memoli@ece.umn.edu.
†Electrical and Computer Engineering and Digital Technology Center, University of Minnesota, Minneapolis, MN

55455, guille@ece.umn.edu

1



Notation

Symbol Meaning

IR Real numbers.

IRd d-dimensional Euclidean space.

ZZ Integers.

IN Natural numbers.

(X, dX) Metric space X with metric dX .

X,Y, Z Metric spaces with metrics dX , dY and dZ , respectively.

BX(x, r) An open ball in the space X, centered at x and with radius r, page 7.

BX(
�
, r) Union of open balls with radius r in the space X, centered at all x ∈ �

, page 7.
�

Finite subset of the metric space X.
�
m Finite subset of the metric space X, with cardinality m.

Pn Finite subset of points (Point Cloud) sampled from metric space (cardinality n).

N
(R,s)
X,n Covering net of X, with n elements, separation s and covering radius R, page 11.

rm Denotes a r > 0 such that X = BX(
�
m, r).

dZH Hausdorff distance between subsets of the metric space Z, page 6.

dGH Gromov-Hausdorff distance between metric spaces, page 6.

dZ,rigidH Rigid isometries’ invariant Hausdorff distance between subsets of Z, page 6.

diam (X) Diameter of the metric space X, page 8.

Πn All n! permutations of elements of the set {1, . . . , n}.
dI Permutation distance between discrete metric spaces, page 10.

V( � ) Voronoi partition of Z induced by the points in � , page 13.

Vi Voronoi cell corresponding to the i-th point, page 13.

dZB Bottleneck distance between finite subsets of Z, page 13.

P~p(n,m) Probability of gathering all n coupons after m trials with probabilities ~p, page 14.

E~p(n) Expected value of the number of coupons to buy in order to gather all n types, page 14.

In A set of n different indices, {i1, . . . , in}, page 17.
�
m[In] If

�
m = {x1, . . . , xm}, then it equals the set of points {xi1 , . . . , xin}, page 17.

dF A partial measure of metric matching, page 17.
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∆X A quantity that equals dXH(
�
m,

�
m[In]), page 18.

L A quantity which approximates dGH(, ). It equals dF + min(∆X ,∆Y ), page 18.

P(E) Probability of the event E.

E(x) Expected value of the random variable x.

hn For n ∈ IN , it denotes
∑n

i=1 i
−1, page 14.

S Smooth sub-manifold of IRd.

a () Area measure (on a smooth manifold).

fS(r) A function equal to min{x∈S} a (BS(x, r)), for r ≥ 0, page 19.

FK,k(r) Equal to a (B(·, r)) on the k-dimensional space of constant curvature K, page 19.
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1 Introduction

Point clouds are one of the most primitive and fundamental manifold representations. One of the
most popular sources of point clouds are 3D shape1 acquisition devices, such as laser range scanners,
with applications in geoscience, art (e.g., archival), medicine (e.g., prohestetics), manufacturing
(from cars to clothes), and security (e.g., face recognition), among other disciplines. These scanners
in general provide raw data in the form of (maybe noisy) unorganized point clouds representing
surface samples. With the increasing popularity and very broad applications of this source of data,
it is natural and important to work directly with this representation, without having to go to
the intermediate step of fitting a surface to it (step that can add computational complexity and
introduce errors). See for example [5, 15, 18, 21, 27, 39, 40, 48, 49] for a few of the recent works
with this type of data. Point clouds can also be used as primitives for visualization, e.g., [7, 27, 52],
as well as for editing [57].

Another important field where point clouds are found is in the representation of high-dimensional
manifolds by samples (see for example [2, 32, 37, 38, 54]). This type of high-dimensional and general
co-dimension data appears in almost all disciplines, from computational biology to image analysis
to financial data. Due to the extremely high dimensionality in this case, it is impossible to perform
manifold reconstruction, and the tasks need to be performed directly on the raw data, meaning the
point cloud.

The importance of this type of shape representation is leading to an increase in the fundamental
study of point clouds, from its basic geometric characteristics such as curvature [43] and intrinsic
distances and geodesics [42], to intrinsic dimensionality and topological structure [2, 13, 16, 17, 22,
54], and also including the detection of particular structures [1] (see also the papers mentioned in
the first paragraph and references therein). The goal of this work, inspired in part by [19] and the
tools developed in [42, 54], is to develop a theoretical and computational framework to compare
shapes represented as point clouds. We are then going to assume the existence of an underlying
structure from which our point cloud data are obtained through a sampling/acquisition process.
Also, eventually we introduce the further assumption that the underlying structures we want say
things about all belong to a family or class of objects which satisfy certain tameness properties.

As we have mentioned, a variety of objects can be represented as point clouds in IRd. One is often
presented with the problem of deciding whether two of those point clouds, and/or the corresponding
underlying objects or manifolds, represent the same geometric structure or not (object recognition
and classification). We are then concerned with questions about the underlying unknown structures
(objects), which need to be answered based on discrete measures taken between their respective
point clouds. In greater generality, we may wonder what is the structural information we can gather
about the object itself by exploring a point cloud which represents it.2

Multidimensional scaling (MDS),3 for example, has been used to partly approach this general
problem of object analysis/recognition, by means of checking whether the underlying space (object)
is flat or not, and also providing information about the object’s dimensionality (as a subset of IRd)
and its projection into a reduced space. Procedures based on MDS require that one first computes
the inter-point distance matrix for all the members of the point cloud (or for a representative

1We will loosely use the terms shape/object/surface in this introduction to refer to either surfaces in space or
Riemannian manifolds in more generality. A more precise notion will be given later on.

2A related important question is what conditions must a point verify in order to faithfully represent an object,
not to mention that one must ascribe a meaning to the word faithfully.

3For Multimensional Scaling, see for example [6].
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selected sub-set of them). If one is interested in comparing two different objects, the problem is
reduced to a comparison between the corresponding inter-point distance matrices of their point
clouds. If the distance we use is the Euclidean one, these matrices only provide information about
their rigid similarity, and (assuming the matrices are of the same size) if they are equal (up to
a permutations of the indices of all elements),4 we can only conclude that there exists a rigid
isometry (rotation, reflection, translation) from one point cloud to the other. Under assumptions
of compactness we can also say something about the true underlying objects. Being more precise,
let the point clouds Pi ⊂ Si be εi-coverings of the compact surfaces Si in IR3, for i = 1, 2 (this
will be formally defined below). Then assuming there exists a rigid isometry τ : IR3 → IR3 such
that τ(P1) = P2, we can bound the Hausdorff distance (which we will also formally define below)
between τ(S1) and S2 as follows:

dIR
3

H (τ(S1), S2) ≤ dIR
3

H (τ(S1), τ(P1)) + dIR
3

H (τ(P1),P2) + dIR
3

H (P2, S2) (1)

= dIR
3

H (S1,P1) + dIR
3

H (τ(P1),P2) + dIR
3

H (P2, S2)

≤ ε1 + 0 + ε2

And of course the same kind of bound holds for the Hausdorff distance between the point clouds
once we assume the underlying continuous objects are rigidly isometric, see §2.1 below.

One possible modification would be considering, still for compact surfaces, the intrinsic distance
instead of the Euclidean (extrinsic) one for the construction of the aforementioned inter-point
distance matrices. A comparison of these new distance matrices would then allow for more freedom
in deciding when 2 objects are similar since now bends are allowed.

If S1 and S2 happen to be isometric (here also allowing for bends and not only rigid transfor-
mations) we wonder whether we will be able to detect this by looking at (finite) point clouds Pi
sampled from each Si. This problem is harder to tackle. We approach it through a probabilistic
model, since in principle there might exist even for the same object, two different samplings that
look quite dissimilar (under discrete measures we can cope with computationally), for arbitrarily
fine scales (see below).

With the help of the theory here presented we recast these considerations in a rigorous framework
and address the case where the distances considered to characterize each point cloud (object) are
more general. We concentrate on the case when there exists an intrinsic notion of distance for each
object we sample. For the applications of isometry invariant shape (surfaces) recognition, one must
therefore consider the distance as measured by paths constrained to travel on the surface of the
objects, better referred to as geodesic distance.

These ideas have been introduced and used in [9, 19] for bending invariant recognition in 3D
(without the theoretical foundations here introduced), see also [29]; and in [22, 54] to detect intrinsic
surface dimensionality. The works [9, 19] argue in favor of invariance to full isometries in the case
of face recognition.

In this paper we introduce both a theoretical and computational framework for the so called
isometry invariant shape recognition problem. The theory we use and build our framework upon is

4Boutin and Kemper, [8], have approached the recognition problem for (discrete objects) by looking only at
the histogram of inter-point squared Euclidean distances. Interestingly, they showed that while there are coun-
terexamples for the recognition problem with this kind of input, they constitute a very small fraction of all the
possible point configurations. Such histograms have been used earlier by the Princeton Shape Analysis Group, see
www.cs.princeton.edu/gfx/proj/shape/index.html.
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that pioneered by Gromov [25], in which a metric is introduced in the space of all (compact) metric
spaces. For the sake of generality we present most of the framework for metric spaces, but the
reader, at any moment, is invited to think of surfaces for simplicity. We will abuse of terminology
in the following sense: Since we are dealing both with metric spaces and finite sets of samples from
them, we are going to speak of continuous and discrete metric spaces. For instance, given a metric
space (X, dX) we consider a finite subset of it,

�
m ⊂ X which we endow with the metric of X to

conform a discrete metric space, then X will be called continuous (we will use this nomenclature
from now on). This is in analogy with the sampling of signals.

The fundamental approach used for isometry invariant recognition in this paper is derived then
from the Gromov-Hausdorff distance, which we now proceed to present. Suppose X and Y are two
(objects) compact subsets of a common bigger metric space (Z, dZ), and we want to compare X to
Y in order to decide whether they are/represent the same object or not. Then, an idea that one
might come up with very early on is that of computing the Hausdorff distance between them (see
for example [14, 30] for an extensive use of this for shape statistics and image comparison):

dZH(X,Y ) := max(sup
x∈X

dZ(x, Y ), sup
y∈Y

dZ(y,X)) (2)

But, what happens if we want to allow for certain deformations to occur and still decide that
the objects are the same? More precisely, we are interested in being able to find a distance between
metric spaces that is blind to isometric transformations (“bends”). This will permit a truly geo-
metric comparison between the manifolds, independently of their embedding and bending position.
Following [25], we introduce the Gromov-Hausdorff distance between Metric Spaces:

dGH(X,Y ) := inf
Z,f,g

dZH(f(X), g(Y )) (3)

where f : X → Z and g : Y → Z are isometric embeddings (distance preserving) into the metric
space Z. It turns out that this measure of metric proximity between metric spaces is well suited for
our problem at hand and will allow us to give a formal framework to address the isometric shape
recognition problem (for point cloud data). However, this notion of distance between metric spaces
encodes the “metric” disparity between them, at first glance, in a computationally impractical way.
We derive below new results that connect this notion of disparity with other more computationally
appealing expressions.

Remark 1 In [19] the authors proposed to use MDS applied to the geodesic distance matrices
of each point cloud in order to obtain a new pair of point clouds in IR3, such that the Euclidean
distance matrices of these new point clouds resemble as well as possible (according to some criterion)
the geodesic distance matrices between the original point clouds. The comparison then proceeds by
computing some metric in IR3 to measure the dissimilarity between the new point clouds. One could

use, for example, the rigid-isometries invariant Hausdorff distance dIR
3,rigid

H (·, ·), see §2.1 ahead.
This process can be rewritten in a more appealing way as follows. Let P1 ⊂ IR3 and P2 ⊂ IR3 be the
original point clouds and Q1 ⊂ IR3 and Q2 ⊂ IR3 the corresponding new (projected) point clouds.
Let also f̂ : IR3 → IR3 and ĝ : IR3 → IR3 be such that f̂(P1) = Q1 and ĝ(P2) = Q2. Then, the

number we compute is dIR
3,rigid

H (f̂(P1), ĝ(P2)) which has an interesting resemblance with the formula
in the definition of the Gromov-Hausdorff distance.5

5Of course, bf and bg are not isometries, in general.
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Since we have in mind specific applications and scenarios such as those described above, and in
particular surfaces and sub-manifolds of some Euclidean space IRd, we assume that we are given
as input points densely sampled from the metric spaces (surfaces, manifolds). This will manifest
itself in many places in the theory described below. We will present a way of computing a discrete
approximation (or bound) to dGH(, ) based on the metric information provided by these point
clouds.

The problem of isometry invariant shape recognition at hand can be split in two parts. Firstly,
suppose the metric spaces under consideration happen to be isometric. We then have to guarantee
that we can discover this by looking at a computable discrete measure of metric similarity based
just on our observed data, that is, the point clouds. Secondly, if that measure of (discrete) metric
similarity is “small,” what can we say about that metric similarity between the underlying metric
spaces? Both parts are addressed in our work. One cannot perform object recognition without
either of them.

The rest of this paper is organized as follows: The basic theoretical foundations are given in
Section §2, Section §3 presents the computational foundations, Section §4 illustrates the use of the
framework with real examples, and finally Section §5 concludes the paper and describes current
efforts and future directions.

We should note that this is a mainly theoretical paper which proposes a framework (that leads
to a possible practical algorithm) and that the examples provided in §4 are not exhaustive and
do not make use of all the machinery here introduced, they simply exemplify and illustrate the
application of the framework. More comprehensive experimentation is subject of current efforts
and will be reported in subsequent publications.

2 Theoretical Foundations

This section covers the fundamental theory behind the bending invariant recognition framework
we develop. We first introduce some basic notation, definitions, and classical results. We use basic
concepts on metric spaces, see for example [33] for a simple exposition of this.

Definition 1 (Metric Space) A set M is a metric space if for every pair of points x, y ∈ M
there is a well defined function dM (x, y) whose values are non-negative real numbers, such that (a)
dM (x, y) = 0 ⇔ x = y, and (b) dM (x, y) ≤ dM (y, z) + dM (z, x) for any x, y and z ∈ M . We call
dM : M ×M → IR the metric or distance. For clarity we will specify a metric space as the pair
(M,dM ).

Definition 2 (Covering) For a point x in the metric space (X, dX) and r > 0, we will denote
by BX(x, r) the set {z ∈ X| dX(x, z) < r}. For a subset A of X, we use the notation BX(A, r) =
∪a∈ABX(a, r). We say that a set C ⊂ X is an R-covering of X if BX(C,R) = X. We will also
frequently say that the set A is a n-covering of X if A constitutes, for some r > 0, a covering of X
by n-balls with centers in points of A.

Definition 3 (Isometry) We say the metric spaces (X, dX) and (Y, dY ) are isometric when there
exists a bijective mapping Φ : X → Y such that dX(x1, x2) = dY (Φ(x1),Φ(x2)) for all x1, x2 ∈ X.
Such a Φ is an isometry between (X, dX) and (Y, dY ).
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Next, we state some well known properties of the Gromov-Hausdorff distance dGH(, ) which will
be useful for our presentation.

Proposition 1 1. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces then

dGH(X,Y ) ≤ dGH(X,Z) + dGH(Z, Y ).

2. If dGH(X,Y ) = 0 and (X, dX), (Y, dY ) are compact metric spaces, then (X, dX) and (Y, dY )
are isometric.

3. Let {x1, . . . , xn} ⊂ X be a R-covering of the compact metric space (X, dX).
Then dGH(X, {x1, . . . , xn}) ≤ R.

4. For compact metric spaces (X, dX) and (Y, dY ):

1

2
|diam (X)− diam (Y )| ≤ dGH(X,Y ) ≤ 1

2
max (diam (X) ,diam (Y ))

where diam (X) := maxx,x′∈X dX(x, x′) stands Diameter of the metric space (X, dX).

5. For bounded metric spaces (X, dX) and (Y, dY ),

dGH(X,Y ) = inf
φ : X → Y
ψ : Y → X

sup
x1, x2 ∈ X
y1, y2 ∈ Y

(xi, yi) ∈ G(φ, ψ)

1

2
|dX(x1, x2)− dY (y1, y2)|

where G(φ, ψ) = {(x, φ(x)), x ∈ X} ∪ {(ψ(y), y), y ∈ Y } and the infimum is taken over all
arbitrary maps φ : X → Y and ψ : Y → X.

The proofs of Properties 1 to 4 can be gleaned from [10, 25, 28, 50], and Property 5 can be found
in [34]. Also of great informative value is [51].

Remark 2 Note that Property 5 above can be recast in a somewhat more clear form: Let A(φ) =
supx1,x2∈X |dX(x1, x2) − dY (φ(x1), φ(x2))|, B(ψ) = supy1,y2∈Y |dX(ψ(y1), ψ(y2)) − dY (y1, y2)| and
C(φ, ψ) = supx∈X, y∈Y |dX(x, ψ(y))− dY (φ(x), y)|, then

dGH(X,Y ) = inf
φ : X → Y
ψ : Y → X

1

2
max (A(φ), B(ψ), C(φ, ψ)) (4)

It is interesting to note the following: Assume that dGH(X,Y ) ≤ η for small η, then roughly
speaking, we can find φ and ψ such that (1) φ provides a low metric distortion map from X
to Y (because A(φ) ≤ 2η), (2) ψ provides a low metric distortion map from Y to X (because
B(ψ) ≤ 2η), and (3) φ and ψ are “almost” inverses of one another (because C(φ, ψ) ≤ 2η, then
taking y = φ(x) in the definition of C we find dX(x, ψ(φ(x))) ≤ 2η for all x ∈ X; and also,
symmetrically, dY (y, φ(ψ(y))) ≤ 2η for all y ∈ Y ).

Remark 3 From Property 4 it follows that two metric spaces whose diameters differ must be at a
positive dGH(, ) distance, as intuition requires.
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From these properties, we can also easily obtain the following important result:

Corollary 1 Let X and Y be compact metric spaces. Let moreover
�
m be a r-covering of X

(consisting of m points) and � m′ be a r′-covering of Y (consisting of m′ points). Then

|dGH(X,Y )− dGH(
�
m, � m′)| ≤ r + r′

We can then say that if we could compute dGH(, ) for discrete metric spaces which are dense
enough samplings of the “continuous” underlying ones, that number would be a good approximation
to what happens between the continuous spaces. Currently, there is no computationally efficient
way to directly compute dGH(, ) between discrete metric spaces in general. This forces us to
develop a roundabout path, see §2.2 ahead. Before going into the general case, we discuss next the
application of the ideas of our framework to a simpler but important case.

2.1 Intermezzo: The Case of Rigid Isometries

When we try to compare two (compact) subsets X and Y of a larger metric space Z, the situation
is a bit simpler. The measure of similarity boils down to a somewhat simpler Hausdorff distance
between the sets (which of course must take into account self-isometries of Z). In more detail, one
must compute

dZ,rigidH (X,Y ) := inf
Φ
dZH(X,Φ(Y )) (5)

where Φ : Z → Z ranges over all self-isometries of Z. If we knew an efficient way of computing
infΦ d

Z
H(X,Φ(Y )), then this restricted shape recognition problem would be well posed for Z, in

view of an adapted version of Proposition 1 and Corollary 1, as soon as we can give guarantees of
coverage. For the sake of completeness we state such a result.

Proposition 2 dZ,rigidH (·, ·) satisfies the triangle inequality and in particular, the following relation
holds:

∣∣∣dZ,rigidH (X,Y )− dZ,rigidH (
�
m, � m′)

∣∣∣ ≤ r + r′

for compact X,Y ⊂ Z such that X ⊂ BZ(
�
m, r) and Y ⊂ BZ( � m′ , r′).

Coverage can be guaranteed, in the case of sub-manifolds of IRd, by imposing a probabilistic
model on the samplings

�
m of the manifolds, and a bound on the curvatures of the family of

manifolds one wishes to work with. In more detail, for given r > 0 and p ∈ (0, 1), we can show that
there exists finite mp,r such that

P
(
dIR

d

H (X,
�
m) > r

)
≤ 1− p

for m ≥ mp,r, see Section §3.2.

In the case of surfaces in Z = IR3, Φ sweeps all rigid isometries, and there exist good algorithms
which can actually solve the problem approximately. For example, in [23] the authors report an
algorithm which for any given 0 < α < 1 can find a rigid transformation Φ̂α such that
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dIR
3

H (
�
m, Φ̂α( � m′)) ≤ (8 + α) inf

Φ
dIR

3

H (
�
m,Φ( � m′))

with complexity O(s4 log s) where s = max(m,m′). This computational result, together with simple
considerations, makes the problem of surface recognition (under rigid motions) well posed and well
justified. In fact, using Proposition 2 we obtain a bound between the distance we want to estimate

dIR
3,rigid

H (X,Y ) and the observable (computable) value dIR
3

H (
�
m, Φ̂α( � m′)):

dIR
3,rigid

H (X,Y )− (r + r′) ≤ dIR
3

H (
�
m, Φ̂α( � m′)) ≤ 10

(
dIR

3,rigid
H (X,Y ) + (r + r′)

)
(6)

Equation (6) gives a formal justification to the procedure outlined for this surface recognition
problem. To the best of our knowledge, this is the first time such formality is presented for this
very important problem, both in the particular case just shown and for the general one addressed
next. In any case, if dS is the measure of similarity we are considering, and d̂S is the computable
approximate measure of similarity, the kind of relation we seek to establish is

A(dS(X,Y )− α) ≤ d̂S(
�
m, � m′) ≤ B(dS(X,Y ) + β) (7)

for some constants A,B and numbers α and β which can be made small by refining the samplings.
Moreover, it may happen that relation (7) holds with a certain probability. Every recognition task
needs to be supported by a relation of this type, see also [45].

2.2 The General Case

The theory introduced by Gromov addresses the concept of metric approximation between metric
spaces. When dealing with discrete metric spaces, as those arising from samplings or coverings of
continuous ones, it is convenient to introduce another distance between them which ultimately is
the one we compute for point clouds, see §3.6 ahead. For discrete metric spaces (both of cardinality
n) (

�
= {x1, . . . , xn}, d � ) and ( � = {y1, . . . , yn}, d � ) we define the distance: 6

dI(
�
, � ) := min

π∈Πn
max

1≤i,j≤n
1

2
|d � (xi, xj)− d � (yπi , yπj )| (8)

where Πn stands for the set of all permutations of {1, . . . , n}. A permutation π provides the
correspondence between the points in the sets, and |d � (xi, xj) − d � (yπi , yπj )| gives the pointwise
distance/disparity once this correspondence has been assumed.

It is evident that one has, by virtue of Property 5 from Proposition 1 (and Remark 2, if we take
the infimum over invertible maps ψ = φ−1):

dGH(
�
, � ) ≤ dI(

�
, � ) (9)

Moreover, we easily derive the following bound, whose usefulness will be made evident in §3.

Corollary 2 Let (X, dX) and (Y, dY ) be compact metric spaces. Let
�

= {x1, . . . , xn} ⊂ X and
� = {y1, . . . , yn} ⊂ Y , such that BX(

�
, RX) = X and BY ( � , RY ) = Y (the point clouds provide

RX and RY coverings respectively). Then

dGH(X,Y ) ≤ RX +RY + dI(
�
, � ) (10)

with the understanding that d � = dX | � × � and d � = dY | � × � .

6One can easily check that this is really a distance.
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Remark 4 This result tells us that if we manage to find coverings of X and Y for which the
distance dI is small, then if the radii those coverings are also small, the underlying manifolds X
and Y sampled by these point clouds must be close in a metric sense. Another way of interpreting
this is that we will never see a small value of dI(

�
, � ) whenever dGH(X,Y ) is big, a simple statement

with practical value, since we will only be able to look at values of dI, which depend on the point
clouds. This is because, in contrast with dGH(, ), the distance dI is (approximately) computable from
the point clouds, see §3.6.

We now introduce some additional notation regarding coverings of metric spaces. Given a metric

space (X, dX), the discrete subset N
(R,s)
X,n denotes a set of points {x1, . . . , xn} ⊂ X such that (1)

BX(N
(R,s)
X,n , R) = X, and (2) dX(xi, xj) ≥ s whenever i 6= j. In other words, the set constitutes a

R-covering and the points in the set are not too close to each other.

Remark 5 For each r > 0 denote by N(r,X) the minimum number of closed balls of radii r
needed to cover X. Then, ([50], Chapter 10), we can actually show that the class (M, dGH) of all
compact metric spaces X whose covering number N(r,X) are bounded for all (small) positive r by
a function N : (0, C1) → (0,∞) is totally bounded. This means that given ρ > 0, there exist a
finite positive integer k(ρ) and compact metric spaces X1, . . . , Xk(ρ) ∈M such that for any X ∈M

one can find i ∈ {1, . . . , k(ρ)} such that dGH(X,Xi) ≤ ρ. This is very interesting from the point
of view of applications since it gives formal justification to classification problem of metric spaces.
For example, in a system of storage/retrieval of faces/information manifolds, this concept permits
the design of a clustering procedure for the shapes.

The following Proposition will also be fundamental for our computational framework in §3.

Proposition 3 ([25]) Let (X, dX) and (Y, dY ) be any pair of given compact metric spaces and let

η = dGH(X,Y ). Also, let N
(R,s)
X,n = {x1, . . . , xn} be given. Then, given α > 0 there exist points

{yα1 , . . . , yαn} ⊂ Y such that

1. dI(N
(R,s)
X,n , {yα1 , . . . , yαn}) ≤ (η + α)

2. BY ({yα1 , . . . , yαn}, R + 2(η + α)) = Y

3. dY (yαi , y
α
j ) ≥ s− 2(η + α) for i 6= j.

Remark 6 This proposition tells us that if the metric spaces happen to be sufficiently close in
a metric sense, then given a s-separated covering on one of them, one can find a (s′-separated)
covering in the other metric space such that dI between those coverings (point clouds) is also small.
This, in conjunction with Remark 4, proves that in fact our goal of trying to determine the metric
similarity of metric spaces based on discrete observations of them is, so far, a (theoretically) well
posed problem.

Since by Tychonoff’s Theorem the n-fold product space Y × . . .×Y is compact, if s−2η ≥ c > 0
for some positive constant c, by passing to the limit along the subsequences of {yα1 , . . . , yαn}{α>0} (if

needed) above one can assume the existence of a set of different points {ȳ1, . . . , ȳn} ⊂ Y such that

dI({ȳ1, . . . , ȳn}, N (R,s)
X,n ) ≤ η, mini6=j dY (ȳi, ȳj) ≥ s− 2η > 0, and BY ({ȳ1, . . . , ȳn}, R+ 2η) = Y .
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Since we are only given finite sets of points sampled from each metric space, the existence of
{ȳ1, . . . , ȳn} guaranteed by Proposition 3 and Remark 6 doesn’t seem to make our life a lot easier
since those points could very well not be contained in our given finite datasets. The simple idea
of using a triangle inequality (with metric dI) to deal with this does not work in principle, since
one can find, for the same underlying space, two covering nets whose dI distance is not small, see
[11, 41]. Let us explain this in more detail. Assume that as input we are given two finite sets of
points

�
m and � m on two metric spaces, X and Y respectively, which we assume to be isometric.

Then the results above ensure that for any given N
(R,s)
X,n ⊂ �

m there exists a N
(R,s)
Y,n ⊂ Y such

that dI(N
(R,s)
X,n , N

(R,s)
Y,n ) = 0. However, it is clear that this N

(R,s)
Y,n has no reason to be contained

in the given point cloud � m. The obvious idea would be try to rely on some kind of property of
independence on the sample representing a given metric space, namely that for any two different
covering nets N1 and N2 (of the same cardinality and with small covering radii) of X the distance
dI(N1, N2) is also small. If this were granted, we could proceed as follows:

dI(N
(R,s)
X,n , N

(R̂,ŝ)
Y,n ) ≤ dI(N

(R,s)
X,n , N

(R,s)
Y,n ) + dI(N

(R̂,ŝ)
Y,n , N

(R,s)
Y,n ) (11)

= 0 + small(R, R̂)

where small(R, R̂) is small number depending only on R and R̂. The property we fancy to rely
upon was conjectured by Gromov in [26] (see also [55]) and disproved by Burago & Kleiner in
[11] and Mc.Mullen in [41], see also [47] for certain positive results. Their counterexamples are for
separated covering nets in ZZ2. It is not known whether one can construct counterexamples for
compact metric spaces, or if there exists a characterization of a family of n-points separated covering
nets of a given compact metric space such that any two of them are at a small dI-distance which can
be somehow controlled with n. A first step towards this is the density condition introduced in [12].

If counterexamples didn’t exist for compact metric spaces, then the above inequality would
be sufficient. Without assuming this, we give below an argument which tackles the problem in a
probabilistic way. In other words, we use a probabilistic approach to bound dI for two different
samples from a given metric space. For this, we pay the price of assuming the existence of a measure
which comes with our metric space.7 On the other hand, probabilistic frameworks are natural for
(maybe noisy) random samples of manifolds as obtained in real applications.8

2.3 A Probabilistic Setting for Sub-manifolds of IRd

We now limit ourself to smooth Riemannian sub-manifolds of IRd endowed with the metric inherited
from ambient space. However, the work can be extended to more general metric spaces, see further
comments in §5.2. In what follows, for an event E, P (E) will denote its probability and for a
random variable x, E (x) will denote its expected value.

Let Z be a smooth and compact sub-manifold of IRd with intrinsic (geodesic) distance function
dZ(·, ·). We can now speak more freely about points {zi}mi=1 sampled uniformly from X: We say that

7In the present report we therefore deal only with the case of sub-manifolds of IRd.
8In more generality, data are acquired by sensors or arrays of sensors which return a value in IRd for some

d ≥ 1. The acquisition process or the sensors themselves might be subject to some perturbations (miscalibrations
of mechanical parts of a 3D-scanner, electric noise in electrodes, etc). Under the assumption of existence of an
underlying structure from which the data are sampled, it therefore seems sensible to introduce a probability measure
which models the acquisition process.
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the random point ẑ is uniformly distributed on Z if for any measurable C ⊂ Z, P (ẑ ∈ C) = a(C)
a(Z) ,

where a (B) denotes the area of the measurable set B ⊂ Z. This uniform probability measure can be
replaced by other probability measures which for example adapt to the geometry of the underlying
surface, and the framework here developed can be extended to those as well, see comments in §5.2.

Let � = {z1, . . . , zn} and � ′ = {z′1, . . . , z′n} be two discrete subsets of Z (two point clouds). For
any permutation π ∈ Πn and i, j ∈ {1, . . . , n},

|dZ(zi, zj)− dZ(z′πi , z
′
πj )| ≤ dZ(zi, z

′
πi) + dZ(zj , z

′
πj )

and therefore we have

dZB( � , � ′) := min
π∈Πn

max
k

dZ(zk, z
′
πk

) ≥ dI( � , � ′) (12)

This is known as the Bottleneck Distance between � and � ′, both being subsets of Z. This is one
possible way of measuring distance between two different samples of the same metric space.9

Instead of dealing with (11) deterministically, after imposing conditions on the underlying metric
spaces X and Y , we derive probabilistic bounds for the left hand side. We also make evident that
by suitable choices of the relations among the different parameters, this probability can be chosen
at will. This result is then used to bound the distance dI between two point cloud samples of a
given metric space, thereby leading to the type of bound expressed in Equation (11) and from this,
the bounds on the original Gromov-Hausdorff distance between the underlying objects.

We introduce the Voronoi diagram V( � ) on Z, determined by the points in � (see for example
[36]). The i-th Voronoi cell of the Voronoi diagram defined by {z1, . . . , zn} ⊂ Z is given by

Vi := {z ∈ Z| dZ(zi, z) < min
j 6=i

dZ(zj , z)} (13)

We then have Z =
⊔n
k=1 Vk.

Lemma 1 1. If the points {z1, . . . , zn} are s-separated, then for any 1 ≤ i ≤ n, BZ(zi,
s
2) ⊂ Vi.

2. If the points {z1, . . . , zn} constitute a R-covering of Z, then Vi ⊆ BZ(zi, R) for all i = 1, . . . , n.

Proof:

To prove 1. first note that for any z ∈ Z and i 6= j, dZ(z, zi) + dZ(z, zj) ≥ s by the triangle inequality.

Assume in particular that z ∈ BZ(zi,
s
2 ), then dZ(z, zi) <

s
2 and dZ(z, zj) >

s
2 for all j 6= i, then z ∈ Vi. To

prove 2. assume z ∈ Vi but z /∈ BZ(zi, R), that is dZ(z, zi) ≥ R. But since {z1, . . . , zn} is a R-covering of Z,

z must belong to a certain BZ(xk, R) for some k 6= i, that is dZ(z, zk) < R. But then z is closer to zk than

to zi, which contradicts z ∈ Vi. @
We consider � to be fixed, and we assume � ′ = {z′1, . . . , z′n} to be chosen from a set � m ⊂ Z

consisting of m� n i.i.d. points sampled uniformly from Z.
We first want to find, amongst points in � m, n different points {zi1 , . . . , zin} such that each

of them belongs to one Voronoi cell, {zik ∈ Vk for k = 1, . . . , n}. We provide lower bounds for
P (# (Vk ∩ � m) ≥ 1, 1 ≤ k ≤ n), the probability of this happening.

9In [47], this distance is used to establish the equivalence (according to this notion) of separated nets in certain
Hyperbolic metric spaces.
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We can see the event as if we collected points inside all the Voronoi cells, a case of the Coupon
Collecting Problem, see [20]. We buy merchandise at a coupons-giving store until we have collected
all possible types of coupons. The next Lemma presents the basic results we need about this
concept. These results are due to Von Schilling ([56]) and Borwein and Hijab ([4]).

Lemma 2 (Coupon Collecting) If there are n different coupons one wishes to collect, such that
the probability of seeing the k-th coupon is pk ∈ (0, 1), (let ~p = (p1, . . . , pn)), and one obtains
samples of all of them in an independent way then:

1. ([56]) The probability P~p(n,m) of having collected all n coupons after m trials is given by

P~p(n,m) = 1− Sn




n∑

j=2

(−1)j




n∑

k=j

pk



m
 (14)

where the symbol Sn means that we consider all possible combinations of the n indices in the
expression being evaluated.10

2. ([4]) The expected value of the number of trials needed to collect all the coupons is given by

E~p(n) = E

(
max

1≤i≤n
Xi

pi

)
(15)

where Xi are independent positive random variables satisfying P (Xi > t) = e−t for t ≥ 0 and
1 ≤ i ≤ n.

For n ∈ IN let hn :=
∑n

i=1 i
−1.

Corollary 3 P~p(n,m) ≥ 1− hn
m·mink pk

.

Proof:

By Markov’s inequality, 1−P~p(n,m) ≤ E~p(n)

m . Now, note that E~p(n) is decreasing in each pk for pk ≥ 0, then

it is clear that E~p(n) ≤ E~1(n)

mink pk
. On the other hand, it is easy to compute by direct probabilistic calculation

that E~1
n

(n) = nhn. We conclude by noting that, by (15), cEc~p(n) = E~p(n) for any c > 0. @

We now directly use these results to bound the bottleneck distance.

Theorem 1 Let (Z, dZ) be a smooth compact sub-manifold of IRd. Given a covering N
(R,s)
Z,n of Z

with separation s > 0 and a number p ∈ (0, 1), there exists a positive integer m = mn(p) such that
if � m = {zk}mk=1 is a sequence of i.i.d. points sampled uniformly from Z, with probability p one can
find a set of n different indices {i1, . . . , in} ⊂ {1, . . . ,m} with

dZB(N
(R,s)
Z,n , {zi1 , . . . , zin}) ≤ R and Z =

n⋃

k=1

BZ(zik , 2R).

Moreover, mn(p) ≤
[

hn
minz a(BZ(z, s

2
))

a(Z)
1−p

]
+ 1.11

10For example S3((p1 + p2)k) = (p1 + p2)k + (p1 + p3)k + (p2 + p3)k.
11For real x, [x] stands for the largest integer not greater that x.
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This result can also be seen the other way around: For a given m, the probability of finding the
aforementioned subset in � m is P~pZ (n,m) as given by (14), for suitably defined ~pZ . The precise
form of ~pZ can be understood from the proof.
Proof:

Let N
(R,s)
Z,n = {ẑ1, . . . , ẑn}. We consider the coupon collecting problem in which the k-th coupon has been

acquired at least once if #{ � m ∩Vk} ≥ 1, where Vk is the k-th cell of the Voronoi partition corresponding to

the covering net N
(R,s)
Z,n . The components of the probability vector ~p are given by pk = a(Vk)

a(Z) for k = 1, . . . , n.

Using the fact that (14) is increasing in the number of trials m,12 we see that given p we can find a positive
integer M such that for m ≥M

P

(
n⋂

k=1

{#{ � m ∩ Vk} ≥ 1}
)
≥ p

Discarding points when more than one has been found inside the same Vk, we can obtain with probability at

least p, exactly one point inside each Vk. Let i1, . . . , in be indices such that zik ∈ Vk for k = 1, . . . , n. Then

dZB({zi1 , . . . , zin}, N (R,s)
Z,n ) ≤ maxz∈Āk dZ(z, ẑk), since by Lemma 1, Vk ⊆ BZ(ẑk, R), and this concludes the

proof of the first claim. Also, by the very same steps plus the triangle inequality we prove that {zi1 , . . . , zin}
constitutes a 2R-covering of Z. Finally, note that by Corollary 3, P~p(n,m) ≥ p for m ≥ hn

(1−p) mink pk
. Since

again by Lemma 1, a (Vk) ≥ minz∈Z a
(
BZ(z, s2 )

)
the last claim follows. @

Corollary 4 Let X and Y compact sub-manifolds of IRd. Let N
(R,s)
X,n be a covering of X with

separation s such that for some positive constant c, s− 2dGH(X,Y ) > c. Then, given any number
p ∈ (0, 1), there exists a positive integer m = mn(p) such that if � m = {yk}mk=1 is a sequence of
i.i.d. points sampled uniformly from Y , we can find, with probability at least p, a set of n different
indices {i1, . . . , in} ⊂ {1, . . . ,m} such that

dI(N
(R,s)
X,n , {yi1 , . . . , yin}) ≤ 3 dGH(X,Y ) +R and Y =

n⋃

k=1

BY (yik , 2(R+ 2dGH(X,Y ))).

Moreover, mn(p) ≤
[

hn
miny a(BY (y, c

2
))

a(Y )
1−p

]
+ 1.

Proof:
Let η = dGH(X,Y ). Following Remark 6, we can find a (R + 2η, s− 2η) n-covering of Y , which we denote

by N
(R̃,s̃)
Y,n , such that dI(N

(R,s)
X,n , N

(R̃,s̃)
Y,n ) ≤ η. Let, as in Theorem 1, m = mn(p) be such that for any i.i.d. set

of points � m = {y1, . . . , ym} uniformly sampled from Y one has

P
(
∃ {yi1 , . . . , yin} ⊂ � m : dYB

(
N

(R̃,s̃)
Y,n , {yi1 , . . . , yin}

)
≤ R̃

)
≥ p

where i1, . . . , in are different indices. Let NY,n ⊂ Y be a set of n different points. Then, using the triangle
inequality

dI(N
(R,s)
X,n , NY,n) ≤ dI(N

(R,s)
X,n , N

(R̃,s̃)
Y,n ) + dI(NY,n, N

(R̃,s̃)
Y,n )

≤ η + dYB(NY,n, N
(R̃,s̃)
Y,n )

12Something obvious for which in, principle, we do not need to know the exact expression (14).
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Hence we obtain, by Theorem 1,

P
(
∃NY,n ⊂ � m : dI

(
N

(R̃,s̃)
X,n , NY,n

)
≤ η + R̃

)
≥ p.

The other claims follow just like in the proof of Theorem 1. @

Remark 7 1. The preceding Corollary deals with the case of positive detection: X and Y are
nearly isometric and we wish to detect this by only accessing the point clouds. The constant
c quantifies this metric proximity as encoded by the phrase “ nearly isometric.” For instance,
for a recognition task where for any two similar objects X and Y , dGH(X,Y ) ≤ ηmax, one
could choose c = s− 2ηmax.

2. Note that the probability P~pY (n,m) itself (or mn(p)) depends on dGH(X,Y ) through the con-
stant c, see an example of the application of these ideas in §3.4 ahead.

Note also that one can write down the following useful bound

P~pY (n,m) ≥ 1− hn

m ·miny∈Y a
(
BY (y, c2)

)a (Y ) (16)

which was implicitly used in the proof of Theorem 1. It is sensible to assume one is interested
in performing the recognition/classification task for a number of objects which satisfy certain
conditions, that is, tune the framework to a particular class of objects. In particular, suppose
the class is characterized, among other conditions, by an upper bound on the sectional curva-
tures. For small r > 0 this allows, via Bishop-Günther’s Theorem, to obtain a lower bound on
minz a (BZ(z, r)) valid for all objects Z in the class. This in turn can be used to calibrate the
system to provide any prespecified probability p as in Corollary 4 for any two objects within
the class, see §3.4 and §3.2 for a more detailed presentation of this ideas.

A rougher estimate of the value of mn(p) alluded to in Corollary 4 can be obtained using the
value of E~p(n) when all the coupons are equally likely: m ' E ~1

n

(n) = n · hn ' n log n.

This concludes the main theoretical foundation of our proposed framework. Now, we must
devise a computational procedure which allows us to actually find the subset NY,n inside the given
point cloud � m when it exists, or at least find it with a large probability. Note that in practise
we can only access metric information, that is, interpoint distances. A stronger result in the same
spirit of Theorem 1 should take into account possible self-isometries of X (Y ), which would increase
the probability of finding a net which achieves small dI distance to the fixed one. We present such
a computational framework next.

3 Computational Foundations

There are a number of additional issues that must be dealt with in order to develop an algorithmic
procedure from the theoretical results previously presented. These are now addressed.
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3.1 Initial Considerations

In practise our input consists of two statistically independent point clouds
�
m and � m′ each of

them composed of i.i.d. points sampled uniformly from X and Y , respectively. For a positive

integer n � min(m,m′) we construct good coverings N
(R,s)
X,n of X and N

(R′,s′)
Y,n of Y , respectively.

Actually, R, s,R′ and s′ all depend on n, and we should choose n such that R and R′ are small
enough to make our bounds useful, see the additional computations below. Details on how we
construct these coverings are provided in Section §3.3. We will assume, without loss of generality,
that these coverings are statistically independent of

�
m and � m′ .

It is convenient to introduce the following additional notation: For a set of points � q = {zk}qk=1

and for a set of indices Iu = {i1, . . . , iu} ⊂ {1, . . . , q}, let � q[Iu] denote the subset {zi1 , . . . , ziu} of
� q.

Corollary 4 suggests that in practise we compute the following symmetric expression

dF(
�
m, � m′) := max

(
min

Jn⊂{1,...,m}
dI(N

(R,s)
X,n , � m′ [Jn]), min

In⊂{1,...,m}
dI(N

(R′,s′)
Y,n ,

�
m[In])

)
(17)

which depends not only on
�
m and � m′ but also on pre-specified covering nets N

(R,s)
X,n and N

(R′,s′)
Y,n .

However we prefer to omit this dependence in the list of arguments in order to keep the notation
simpler.

Then, dF(
�
m, � m′) upper bounds dGH(

�
m, � m′), something we need to require. In fact, for any

In ⊂ {1, . . . ,m}, using the triangle inequality for dGH (Property 1 from Proposition 1) and then
Property 3 from Proposition 1:

dGH(
�
m, � m′) ≤ dGH(

�
m,

�
m[In]) + dGH(

�
m[In], � m′)

≤ dGH(
�
m,

�
m[In]) + dGH(

�
m[In], N

(R′,s′)
Y,n ) + dGH(N

(R′,s′)
Y,n , � m′)

≤ dXH(
�
m,

�
m[In]) + dI(

�
m[In], N

(R′,s′)
Y,n ) +R′

Now, considering I∗n such that dI(
�
m[I∗n], N

(R′,s′)
Y,n ) = minIn⊂{1,...,m} dI(N

(R,s)
Y,n ,

�
m[In]), we find

dGH(
�
m, � m′) ≤ dXH(

�
m,

�
m[I∗n]) + dF(

�
m, � m′) +R′

Symmetrically, we also obtain for J∗n such that dI( � m[J∗n], N
(R,s)
X,n ) = minJn⊂{1,...,m′} dI(N

(R,s)
X,n , � m′ [Jn])

dGH(
�
m, � m′) ≤ dYH( � m′ , � m′ [J∗n]) + dF(

�
m, � m′) +R.

Hence, combining the last two expressions

dGH(
�
m, � m′) ≤ dF(

�
m, � m′) (18)

+ min (dXH(
�
m,

�
m[I∗n]), dYH( � m′ , � m′ [J∗n]))

+ max(R,R′)

what implies (Corollary 1) a similar upper bound for dGH(X,Y ). In fact, let rm := dXH(X,
�
m) and

rm′ := dYH(Y, � m′), then
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dGH(X,Y ) ≤ dF(
�
m, � m′) (19)

+ min (dXH(
�
m,

�
m[I∗n]), dYH( � m′ , � m′ [J∗n]))

+ max(R,R′) + rm + rm′

Let ∆X := dXH(
�
m,

�
m[I∗n]) and ∆Y := dYH( � m′ , � m′ [J∗n]).

We now deal with the opposite kind of inequality. By Corollary 4 we know that with probability
at least P~pX (n,m)× P~pY (n,m′) we will have both:13

dF(
�
m, � m′) ≤ 3 dGH(X,Y ) + max(R,R′) (20)

and

∆X ≤ 2(R′ + 2dGH(X,Y )) and ∆Y ≤ 2(R+ 2dGH(X,Y )) (21)

and from this it follows in particular that min(∆X ,∆Y ) ≤ 2 max(R,R′) + 4dGH(X,Y ) with the
same probability.

Summing up, we have thus obtained:

dGH(X,Y )− α(R,R′,m,m′) ≤ L(
�
m, � m′)

prob
≤ 7(dGH(X,Y ) + β(R,R′)) (22)

where the symbol
prob
≤ means that the inequality holds with probability P~pX (n,m) × P~pY (n,m′),

α(R,R′,m,m′) := max(R,R′) + (rm + rm′),
14 β(R,R′) := 3

7 max(R,R′), and

L(
�
m, � m′) := dF(

�
m, � m′) + min(∆X ,∆Y ). (23)

Note, for future reference, that L(
�
m, � m′) ≤ 3

2 max(diam (X) ,diam (Y )).

Remark 8 Note that α, β and the probability can be controlled by suitably choosing all the param-
eters. We have therefore obtained an expression like the one anticipated in Section §2.1, Equation
(7). The main difference is that we have not yet proved that L(

�
m, � m′) can be computed exactly

or approximately in practise. In §3.6 we present a simple algorithm for approximately computing
this quantity. We do not provide bounds on the fidelity of the algorithm in this paper. Results in
this direction are subject of current efforts.

Remark 9 By a modification of the ideas here presented it may be possible to provide a framework
recognition of partial objects: One might want to check whether one object is a part of another one.

Clearly, in that case, one shouldn’t but compute one half of dF. The covering net N
(R′,s′)
Y,n should

represent the object that we want to find inside the one represented by
�
m.

13Because we assumed � m to be independent from � m′ .
14Observe that α(R,R′,m,m′) ≤ 3 max(R,R′).
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3.2 Working with Point Clouds

All we have are finite sets of points (point clouds) sampled from each metric space, and all our com-
putations must be based on these observations only. Since we made the assumption of randomness
in the sampling (and it also makes sense in general to make a random model of the problem, given
that the shapes are acquired by a scanner for example), we must relate the number of acquired
data points to the coverage properties we wish to have. In other words, and following our theory
above, we would like to say that given a desired probability pc and a radius rc, there exists a finite
m such that the probability of covering all the metric space with m balls (intrinsic or not) of radius
rc centered at those m random points is at least pc. This kind of characterizations are easy to
deal with in the case of sub-manifolds of IRd, where the tuning comes from the curvature bounds
available. For this we follow [42]. Let Z be a smooth and compact sub-manifold of IRd of dimension
k. Let � m = {z1, . . . , zm} ⊂ Z consist of m i.i.d. points uniformly sampled from Z. For r > 0
define

fZ(r) := min
z∈Z

a (BZ(z, r)) (24)

Then, for p ∈ (0, 1) and δ > 0 we can prove that if m ≥ − log((1−p)fZ(δ/4))
fZ(δ/2) then

pδ,m := P (Z ⊆ ∪mi=1BZ(zi, δ)) ≥ p (25)

The function fZ can be lower bounded using an upper bound, K, for the sectional curvatures
of Z (Bishop-Günther Theorem, see [24]): fZ(r) ≥ FK,k(r) where FK,k(r) denotes the area of a
ball of radius r in a space of constant sectional curvature K and dimension k. For example, when

K > 0, one has FK,k(r) = 2πk/2

Γ(k/2)

∫ r
0

(
sin(t
√
K)√

K

)k−1
dt.15

This relation gives us some guidance about the number points we must sample in order to have
a certain covering radius, or to estimate the covering radius in terms of m. An important point to
remark is that this kind of relations, (25), should hold for the family of shapes we want to work
with (in a way similar to the one exposed in §3.4), therefore, once given bounds on the curvatures
that characterize the family, one can determine a precise probabilistic covering relation for it. We
leave the exploitation/application of this idea for future work.

Given the natural number n ≤ m (or eventually s > 0), we use the oracle described in §3.3
below to find n-points from � m which constitute a covering of � m of the given cardinality n (or
of the given separation s or given covering radius R) and of a resulting radius Rres (or resulting

separation sres). We denote this set by N
(Rres,s)	
m,n

⊆ � m (or N
(R,sres)	
m,n

⊆ � m, respectively).

3.3 Finding Coverings

In order to find the coveringsN
(R,s)
Z,n , we use the well known Farthest Point Sampling (FPS) strategy,

which we describe next. Suppose we have a dense sampling � m of the smooth and compact sub-
manifold (Z, dZ) of IRd as interpreted by the discussion above. We want to simplify our sampling
and obtain a well separated covering net of the space. We also want to estimate the covering radius
and separation of our covering net. It is important to obtain subsets which retain as best as possible
the metric information contained in the initial point cloud in order to make computational tasks
more treatable without sacrificing precision.

15Γ(t) denotes the usual Gamma function: Γ(t) =
R∞

0
ut−1e−u du.
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We first show a procedure to sample the whole of Z. Fix n the number of points we want to have
in our simplified point cloud Pn. We build Pn recursively. Given Pn−1, we select p ∈ Z such that
dZ(p,Pn) = maxz∈Z dZ(z,Pn−1) (here we consider of course, geodesic distances). There might exist
more than one point which achieves the maximum, we either consider all of them or randomly select
one and add it to Pn−1. This sub-sampling procedure has been studied and efficiently implemented
in [44] for the case of surfaces represented as point clouds.

The FPS procedure satisfies several useful properties as described below.
Let M(Pn−1) ⊂ Z denote the set of points z for which dZ(Pn−1, z) is maximal. We denote by

sn and Rn the separation and covering radius of Pn ⊂ Z, respectively.

Lemma 3 Let Pn be the set obtained for each n ≥ n0 according to the FPS strategy starting from
Pn0 , and let pn+1 denote any point in M(Pn). Then, for n ≥ n0,

1. dZH(Z,Pn+1) ≤ dZH(Z,Pn), that is Rn+1 ≤ Rn.

2. dZ(pn+2,Pn+1) ≤ dZ(pn+1,Pn).

3. sn := min1≤i<j≤n dZ(pi, pj) ≥ min1≤i<j≤n+1 dZ(pi, pj) = sn+1.

4. sn = dZ(pn,Pn−1).

5. dZH(Z,Pn) = dZ(pn+1,Pn).

6. n ≤ a(Z)
fZ( sn

2
)

where a is the area measure on Z and fZ was defined in (24).16

In practise we do not have access to Z but only to a point cloud, � m, sampled from it. Anyhow,
we can still follow the same algorithmic procedure.

Remark 10 These properties make it easy to compute sn and Rn on the fly inside the algorithm,
something useful when the objective is to to obtain either a pre-specified covering radius or a minimal
prespecified separation. However, it turns out to be useful to have an estimate on n depending on a
prespecified covering radius, that is, we want to find n such that using the FPS we obtain a covering
of Z consisting of n points and with radius not greater than ε. Property 6 in Lemma §3 gives us
a way. Observe that sn = Rn−1, then note that if n ≥ a(A)

fZ(ε/2) we must have fZ(sn/2) ≤ fZ(ε/2).
But fZ is obviously non-decreasing, therefore ε ≥ sn = Rn−1 ≥ Rn.

An interesting problem to solve has to do with the behavior of sn with n through the FPS
procedure, in the sense that we would like to know the maximum number of steps of the procedure
that can be performed such that the separation remains larger than a prespecified number, check
Remark 7. Note, for example, that in the case of the unit sphere S2, the construction of the FPS
net goes roughly as follows: The first two points are any antipodal points, call them p1 and p2.
The third point can be any on the equator with respect to p1 and p2. The fourth point will lie
still on the equator defined by p1 and p2 but will be antipodal to p3. The next eight points will be
the centers of the octants defined by the 3 maximal circumferences passing through {p1, p2, p3, p4},
{p1, p2, p5, p6} and {p3, p4, p5, p6}. The construction follows a similar pattern for n > 8. We can
therefore obtain an exact formula for sn. Now, given a surface S ∈ A (A is a certain class of

16Note that with curvature bounds one can obtain a more explicit relation between sn and n.
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compact smooth surfaces), we would like to be able to lower bound sn(S) by some quantity related
to sn(S2). Perhaps this will require assuming upper bounds on the Gauss curvature of S ∈ A. In
any case, knowledge of this lower bounds will let us find, for any given s > 0, a ns ∈ IN such that
for all n ≤ ns, sn(S) ≥ s for all S ∈ A.

Let us now assume that the discrete metric space ( � m, dZ) is a good random sampling of the
underlying (Z, dZ) in the sense that dH(Z, � m) ≤ r with a certain probability pr,m, as discussed in
Section §3.2. We then want to simplify � m in order to obtain a set Pn with n points which is both a
good sub-sampling and a well separated covering net of X.17 We want to use our n sampled points
in the best possible way. We are then led to using the construction discussed above. For example,
choose randomly one point p1 ∈ � m and consider P1 = {p1}.18 Run the procedure FPS until n− 1
other points have been added to the set of points.19 Compute now rn := maxq∈ � m d(q,Pn). Then,
also with probability pr,m, Pn is a (r + rn)-covering net of X with separation sn as expressed in

Lemma 3. Following this, we now use the notation N
((r+rn),sn)
Z,n .

Next, we present a simplified example of application of the ideas discussed so far.

3.4 An Idealized Example

Suppose, for instance, that we are trying to detect, amongst a finite number of objects {X i}Li=1

belonging to a certain family A, when two objects are isometric. We will assume for simplicity of
exposition that we have only two possible cases or hypotheses: either (H1) dGH(X i, Xj) = 0 or
(H2) dGH(X i, Xj) ≥ D for some D > 0 for all 1 ≤ i, j ≤ L.

We characterize the family A as those smooth compact surfaces of IR3 such that their Gaussian
curvature is bounded from above by some positive constant K, whose total area is bounded from
above by some finite constant A. Then, for any sufficiently small t > 0,

fS(t) := min
x∈S

a (BS(x, t)) ≥ 2π

K
(1− cos(t

√
K)) =: FK,2(t)

for all S ∈ A, by the Bishop-Günther Theorem, see §3.2. Note in particular that FK,2(t) > 0 for
0 < t < π√

K
.

For 1 ≤ i ≤ L we will denote by
� i
mi the point cloud corresponding to the object X i and ri will

denote numbers such that X ⊂ B(
� i
mi , ri).

20

Let X i and Xj be any two such objects, we will decide, in this example, that X i and Xj are
isometric whenever L(

� i
mi ,

� j
mj ) is smaller than a certain threshold, see Equation (22).

Fix ε > 0. For all X i choose coverings N
(Ri,si)

Xi,ni
such that max1≤i≤LRi ≤ ε, then ni will be

fixed by the procedure one uses to construct those coverings, see §3.3. Let n := maxi ni and
R := miniRi ≤ ε. By adding new points to each of the coverings, if necessary, construct new
coverings all with n points, covering radius ε and resulting separation si. Let s := mini si. Note

17One more reason for wanting the sub-sampling to be well separated, besides the one given by Corollary 4, is that
intuitively, the more separated the covering net, the more efficient the use of the points to cover the metric space.

18Another option is choosing p1 and p2 in 
 m at maximal distance and then recurse.
19As we mentioned before, the goal can be different: Keep adding points while the separation of the resulting

sub-sampling is big enough as measured by some pre-specified constant s > 0.
20In this example we neglect the fact that this covering relation holds with a certain probability.

21



that we can estimate n in terms of ε, A and K using the discussion in Remark 10. In fact,

n ≥ nε := 1 +
[

A
FK,2(ε/2)

]
will do the job.

We are now going to estimate the number of sample points (cardinality of the point clouds)
needed for each (all) of the objects in order to be able to detect (H1) with high probability.

According to (22), for any 1 ≤ i, j ≤ L we know that:

• Under (H1), with a probability Qij := P~pXi (n,mi)× P~p
Xj

(n,mj), we have

L(
�
mi ,

�
mj ) ≤ 3ε.

• Also, under (H2), assuming ε ≥ rk for 1 ≤ k ≤ L,21

L(
�
mi ,

�
mj ) ≥ D − 3ε

This tells us how to design ε in relation to D in order to be able to tell both hypotheses apart
by computing L(

�
mi ,

�
mj ). Thus, let ε� D

6 .22

Now, one wants to impose Qij to be high, that is Qij ≥ (1 − q)2 for some small prespecified
q. Then, using the comments in Remark 7, we see we can for example fix c := s and estimate the
required number of samples for each Xi as mi ≥ hnA

q·FK,2( s
2

) . In conclusion, one can require that all

the point clouds consist of at least hnεA
q·FK,2( s

2
) points (sampled uniformly) from each of the objects

and that all the coverings (constructed using FPS) consist of at least nε points.

3.5 Computing Geodesic Distances

In our experiments we have always worked with sub-manifolds of IRd. We have used a graph based
distance computation following [31], or the exact distance, which can be computed only for certain
examples (spheres, planes). We could also use the techniques developed for triangular surfaces in
[35], or, being this the optimal candidate, the work on geodesics on (maybe noisy) point clouds
developed in [42].

The geodesic computation leads to additional sources of (controllable) errors. We can not
compute dX(xi, xj) and dY (yi, yj) exactly, but rather approximate values dhX(xi, xj) and dh

′
Y (yi, yj)

for which error bounds are often available [42]. For some suitable function f(·, ·, ·, ·)
∣∣∣dX(xi, xj)− dhX(xi, xj)

∣∣∣ ≤ f(h, r, s, n) (26)

and

∣∣∣dY (yi, yj)− dh
′
Y (yi, yj)

∣∣∣ ≤ f(h′, r′, s′, n) (27)

where h and h′ control the degrees of approximation. These kind of bounds can be computed for all
the approximations we have worked with (see [3], [35]), and also for methods like the one proposed
in [42]. We omit in this report the inclusion of this source of errors in our considerations, results
in that direction will reported elsewhere.

21This is reasonable since � imi are supposed to be finer samplings than N
(Ri,si)

Xi,n
.

22What means that all Ri � D
6

.
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3.6 Additional Implementational Details

In this section we conclude the details on the implementation of the framework here proposed.
The first step of the implementation is the computation of dF and subsequently L, which from the
theory we described before, bounds the Gromov-Hausdorff distance.

We have implemented a simple algorithm.23 According to the definition of dF, (17), given the
matrix of pairwise geodesic distances between points of

�
m, we need to determine whether there

exists a sub-matrix of the whole distance matrix corresponding to
�
m which has a small dI distance

to the corresponding interpoint distance matrix of a given N
(R′,s′)
Y,n . Since we are free to choose -any

coverings-, we select this latter covering net as the result of applying the FPS procedure to obtain
a subsample consisting of n points, where the first two points are selected to be at maximal distance
from each other. We believe that this choice, by the very nature of the FPS sampling procedure,
produces a set of points with certain particularly interesting metric characteristics. For example,
just to motivate our choice, consider the set of the first 7 FPS points of a dense point cloud on a
crocodile and a dog models shown in Figure 1 below.

Figure 1: FPS nets (for n = 7) on two point cloud models shown as red balls. Note the perceptual
meaningfulness of the point locations automatically chosen by the procedure. (This is a color figure.)

To fix notation, let
�
m = {x1, . . . , xm} and N

(R′,s′)
Y,n = {yj1 , . . . , yjn}. We then use the following

algorithm.

(k = 1, 2) Choose xi1 and xi2 such that |dX(xi1 , xi2)− dY (yj1 , yj2)| is minimized.

(k > 2) Let xik+1
∈ �

m be such that ek+1(xik+1
) = min1≤il≤m ek+1(xil) where

ek+1(xil) = max
1≤r≤k

|dX(xil , xir)− dY (yjk+1
, yjr)|

We stop when n points, {xi1 , xi2 , . . . , xin} have been selected, and therefore a distance sub-matrix
((dX(xiu , xiv)))

n
u,v=1, is obtained.

Since we can write

dI

(
{xi1 , . . . , xin}, N

(R′,s′)
Y,n

)
≤ 1

2
max

1≤k≤n
max

1≤t≤k−1
|dX(xik , xit)− dY (yjk , yjt)| =

1

2
max

1≤k≤n
ek(xik)

23This simpler algorithm in turn can be modified to be exhaustive and therefore rigorous, details will provided
elsewhere.
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we then see that with our algorithm we are trying to decrease the error by working across the

sub-diagonal rows of the distance matrix corresponding to N
(R′,s′)
Y,n = {yj1 , . . . , yjn}.

Of course, we now use the same algorithm to compute the other half of dF. Note that the set
of indices {i1, . . . , in} corresponds to I∗n as introduced in the definition of ∆X and subsequently L,
Equation (23). Therefore, we also obtain an approximation to L(

�
m, � m′).

The case k = 1, 2 requires visiting all m(m−1)
2 interpoint distances between points in

�
m. For

k ≥ 3, one must check km different interpoint distances. Then, the complexity of the algorithm is
O(2hnm + m2). We are currently studying computational improvements along with error bounds
for the results provided by the algorithm.

Of course, we still have to prove (or disprove) that the above algorithm, based on FPS covering
nets, approximates dF within a reasonable factor. This is subject of current efforts.

4 Examples

We now present simple experiments that illustrate the application of the theoretical and compu-
tational framework introduced in previous sections. We should note that in these experiments we
don’t yet exploit the full potential of our theory.24 For example, to use some of the bounds we
need to estimate (or know!) curvature bounds. This estimation could be done using bootstrapping
and will be investigated in the future. Also in the future, we plan to make these experiments more
rigorous, including concepts of hypothesis testing.

We complemented the more complex data (as presented below) with simple shapes:

[Plane] Σπ = [− π√
8
, π√

8
]2 and

�
m are points sampled uniformly from the square. Note that

diam (X) = π.

[Sphere] S = {x ∈ IRd : ‖x‖ = 1} and
�
m is a set of points uniformly distributed on the sphere.

We generated the sample points using the method of Muller, see [46].

4.1 Positive Detection

We first test our framework when X and Y are isometric. We consider X = Y and see whether we
make the right decision based on the discrete measurements. Let

�
m and � m be two independent

sets composed of m independent, uniformly distributed random points on X. We consider X to
be either the plane Σπ or the sphere S as defined above. Given n, using the FPS procedure,

we construct N
(RX ,sX)� m,n and N

(RY ,sY )� m,n from
�
m and � m, respectively, and look for a metric match

inside
�
m and � m, respectively, following the algorithm described in §3.6 for the computation of

dF(
�
m, � m) and subsequently L(

�
m, � m).25 For each dataset we tested for values of m ∈ M =

{1000, 2000, 2500} and n ∈ N = {20, 40, . . . , 140}, and obtained the results reported below. In
Tables 1 and 2 we show the values obtained for L for values of m ∈ M and n ∈ N . As expected,
the values of L are small both when compared to the values reported in next section (for non-
isometric shapes, X = Σπ and Y = S) and when compared to the upper bound 3π

2 ' 4.7124, as
mentioned after Equation (22). Note that as a verification, in accordance with formula (22) for
dGH(X,Y ) = 0, we also display the corresponding values of 3 max(RX , RY ) and the probability,

24For instance, we are not taking into account the probability of covering the shape with the random cloud sampled
from it, see (25).

25Keep in mind that actually dF( � m, � m′) depends on n, see its definition (17).
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P~pX (n,m)×P~pY (n,m), of having L ≤ 3 max(RX , RY ) estimated by using the bound (16). Asterisks
(∗) in the tables denote that our lower bound (16) was not tight enough to give a positive number.
Note that in our experiments we always obtained L ≤ 3 max(RX , RY ). This is in some sense a
validation of our algorithm for computing L. It also can be interpreted as that there is still room
for improvement in the bounds (22).

m\n 20 40 60 80 100 120 140

1000 0.57077 0.39095 0.32211 0.29971 0.26287 0.24900 0.24900
L 2000 0.57216 0.38335 0.31009 0.28149 0.24506 0.24074 0.22770

2500 0.56942 0.37424 0.30553 0.26125 0.23818 0.24336 0.22468

1000 1.4929 0.96361 0.71275 0.59935 0.51257 0.48078 0.42079
3 max(RX , RY ) 2000 1.5607 1.0024 0.75905 0.65428 0.53287 0.49245 0.44269

2500 1.5626 1.0317 0.76530 0.66509 0.54065 0.50211 0.45791

1000 0.83082 0.55117 0.22773 0.044571 ∗ ∗ ∗
prob ≥ 2000 0.91527 0.77526 0.58685 0.44374 0.21043 0.14020 0.039607

2500 0.93275 0.82145 0.66751 0.56269 0.35018 0.25493 0.13207

Table 1: Table with values of L for X,Y = Pπ (a plane). See the text for a detailed explanation.

m\n 20 40 60 80 100 120 140

1000 0.65513 0.50742 0.44578 0.41879 0.38161 0.36817 0.35826
L 2000 0.63882 0.49814 0.43230 0.39641 0.38798 0.34721 0.31449

2500 0.63873 0.51874 0.40902 0.39149 0.34665 0.32906 0.31931

1000 1.7930 1.2932 0.98264 0.87936 0.78162 0.72061 0.64876
3 max(RX , RY ) 2000 1.8154 1.3407 1.0688 0.91887 0.83075 0.72182 0.66511

2500 1.8154 1.3573 1.0264 0.91894 0.79693 0.72379 0.68160

1000 0.71395 0.39766 0.085661 0.0017990 ∗ ∗ ∗
prob ≥ 2000 0.82951 0.68052 0.43286 0.31059 0.16894 0.061612 0.0087141

2500 0.87192 0.71880 0.52749 0.43477 0.27696 0.16941 0.10045

Table 2: Table with values of L for X,Y = S (a unit sphere). See the text for a detailed explanation.

4.2 Positive Rejection

We now proceed to compare shapes that are not isometric. We let X = Σπ (a plane) and Y = S
(a sphere). In this case we expect to be able to detect, based on the finite point clouds, that L is
large, in comparison to the values we obtain in the previous section, when the shapes were actually
the same.

Table 3 shows the results of a simulation in which we compared the sphere S and the plane Σπ,
while varying the covering net sizes and the total number of points uniformly sampled from them
(n ∈ N and m ∈ M as before). As expected, the values are larger than when comparing plane
against plane or sphere against sphere.
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m\n 20 40 60 80 100 120 140

1000 1.3191 1.2715 1.1583 1.1739 1.1919 1.1537 1.0849
L 2000 1.0751 1.0751 1.0816 1.0991 1.1155 1.1155 1.1305

2500 1.2059 1.1369 1.1369 1.1471 1.0984 1.1179 1.1179

Table 3: Values of L for a comparison between Σπ and S for n ∈ N and m ∈M .

4.3 3D-Shape Recognition

We conclude the experiments with real (more complex) data. We have 4 sets (isometry classes) of
shapes,26 the crocodile C = {C1, C2}, the giraffe G = {G1, G2}, the hand H = {H1,H2} and the
body, B = {B1, B2}. The 2 shapes in each set are bends of each other and therefore isometric. We
ran the algorithm with n = 50, m = 2500 (recall the rough estimate m ' n log n given in Remark 7
and note that with this choices n log n ' 200� 2500 = m), using Dijkstra’s algorithm to compute
geodesic distances.27 The data description and results are reported in Figure 2. Observe that for
any fixed shape X ∈ C ∪ G ∪ H ∪ B, the value of L(X,Y ) is always lower for Y in the same
isometry class as X. We note that the technique is not only able to discriminate between different
objects but, as expected, doesn’t get confused by bends: The distances between a given object and
the possible bends of another one are very similar, as it should be the case for isometry invariant
recognition.

5 Extensions and Conclusions

The comparison framework here introduced opens the doors to extensive research in the area. We
conclude this paper by presenting some possible directions.

5.1 Extensions

The extension to more general metric spaces can be done, in principle, once one agrees upon
some definition of uniform probability measure, something that could be done using the Hausdorff
Measure, which is defined from the metric.

Another related possible (and easy) extension is that of admitting the points to be sampled
from the manifolds with probability measures other than uniform. Actually, in the case of surfaces
in IR3 acquired by a 3D-Scanner, the probability measure models the acquisition process itself. In
this case, the framework here presented can be extended for a wide family a probability measures,
namely those which admit a density function which vanishes at most in sets of 0-uniform measure,
i.e., there are no holes in the acquisition process.

In other situations it might make more sense to consider the recognition problem for triplets
(X, d, µ), where (X, d) is a metric space and µ is a (probability) measure defined on sets of X.

26The datasets were kindly provided to us by Prof. Kimmel and his group at the Technion.
27We first considered 10000 points sampled from each of the objects. From each of these these sets we then sub-

sampled the 2500 we worked with. For each dataset we used the 10000 points to construct a 15-nearest neighbors
graph and then computed the intrinsic distance matrix between the 2500 subset of points using Dijkstra over the
whole graph.
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Model

1.4071 5.5900 11.769 10.776 11.109 11.111 11.109 11.146

5.5900 1.4576 12.647 10.196 11.119 11.120 11.123 11.159

11.769 12.647 1.9357 6.2874 15.169 15.170 15.274 15.207

10.776 10.196 6.2874 2.0342 14.692 14.693 14.797 14.746

11.109 11.119 15.169 14.692 0.0045257 0.019845 0.22663 0.19691

11.111 11.120 15.170 14.693 0.019845 0.0047940 0.23164 0.19715

11.109 11.123 15.274 14.797 0.22663 0.23164 0.033033 0.096958

11.146 11.159 15.207 14.746 0.19691 0.19715 0.096958 0.032846

Diameters 22.205 22.222 30.322 29.367 0.040326 0.038832 0.44957 0.37998

Figure 2: Comparison results for the complex objects described in §4.3. The number of points per
model are indicated in the first row under the corresponding figure. The values reported are the
estimate of L between all pairs of objects given by our algorithm. Note that (1) For any object X
in this experiment, L(X,Y ) is minimal for Y in the isometry class of X; (2) All objects within the
same isometry class have similar values of L with all other objects belonging to another class.

An interesting extension which might make the computational analysis easier would be working
with alternative definitions of Hausdorff distance. For example, remembering that the Hausdorff
distance between X,Y ⊂ Z, (Z, d, µ) a metric space with metric d (and with probability measure
µ) was defined as

dZH(X,Y ) := max(sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)).

Then, one can consider substituting each of the supremums inside the max(, ) operation by an

Lp-approximation (for p ≥ 1), for example: supx∈X d(x, Y ) ↔
(∫
dp(x, Y )µ(dx)

)1/p
, and similarly

for the other supremum to obtain, also allowing for a Lq-approximation of the max (q ≥ 1):

dZHp,q
(X,Y ) :=

((∫
dp(x, Y )µ(dx)

)q/p
+

(∫
dp(y,X)µ(dy)

)q/p)1/q

and then the corresponding notion of (p, q)-Gromov-Hausdorff distance is accordingly defined.
In particular, it would be interesting to know the corresponding (p, q) version of Property 5 in
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Proposition 1. Of particular interest in this respect is the very recent work [53].

5.1.1 Scale Dependent Comparisons

In some applications it might be interesting to compare objects in a more local fashion, or in other
words, in a scale dependent way. For example, given two objects S1 and S2 (with corresponding
geodesic distance functions d1 and d2) one might wonder whether they resemble each other under

the distance dGH(, ) when each of them is endowed with the metric dεi := ε(1− e−
di
ε ), i = 1, 2. This

choice for the new metrics imposes a scale dependent comparison.
This situation has an important consequence: When ε is small enough one might choose to

replace di by their Euclidean counterparts since, for nearby points x and x′ on the sub-manifold
S ⊂ IRk, dS(x, x′) ' dIRk(x, x′). This dispenses with the computational burden of having to
approximate the geodesic distance. Also, in a similar vein, in certain applications it may make sense
to normalize the distance matrices of all the objects so as to obtain a scale invariant comparison.

5.2 Conclusions

A theoretical and computational framework for comparing (smooth, connected and compact) sub-
manifolds of IRd given as point clouds was introduced in this paper. The theoretical component is
based on the Gromov-Hausdorff distance, which has been embedded in a probabilistic framework
to deal with point clouds and computable discrete distances. Examples illustrating this theory were
provided.

We are currently working on proving the correctness of the algorithm described in §3.6, im-
proving its computational efficiency, performing additional experiments adding hypotheses testing
techniques, and in particular, comparing high dimensional point clouds with data from image sci-
ences and neuroscience. These further results and extensions will be reported elsewhere.
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