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Summary. We propose an extension of hierarchical clustering methods, called mul-
tiparameter hierarchical clustering methods which are designed to exhibit sensitivity
to density while retaining desirable theoretical properties. The input of the method
we propose is a triple pX, d, fq, where pX, dq is a finite metric space and f : X Ñ R
is a function defined on the data X, which could be a density estimate or could
represent some other type of information. The output of our method is more general
than dendrograms in that we track two parameters: the usual scale parameter and a
parameter related to the function f . Our construction is motivated by the methods
of persistent topology [6], the Reeb graph and Cluster Trees [16]. We present both a
characterization, and a stability theorem.
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1 Introduction

Clustering techniques play a very central role in various parts of data analysis.
They can give important clues to the structure of datasets, and therefore
suggest results and hypotheses in the underlying science. However, despite
being one of the most commonly used tools for unsupervised exploratory data
analisys, and despite its extensive literature, very little is known about the
theoretical foundations of clustering methods. These points have been made
prominent by Ben-David and von Luxburg in [1].

The general question of which methods are “best”, or most appropriate
for a particular problem, or how significant a particular clustering is has not
been addressed very frequently. In the context of standard clustering (stan-
dard clustering refers to clustering methods that output a single partition of
a dataset and hierarchical methods that yield a nested family of partitions),
J. Kleinberg proves in [11] a very interesting impossibility result for the prob-
lem of even defining a clustering scheme with some rather mild invariance
properties.

Inspired by Kleinberg’s axiomatic treatment, in [4] we wondered whether
in the context of hierarchical clustering (HC from now on) methods, one would
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be able to lift the obstruction to existence in his result. Interestingly, we were
able to prove that for HC methods, conditions similar to Kleinberg’s yield
uniqueness instead of non-existence. This HC scheme singled out by our the-
orem satisfies precise stability and convergence properties [4]. This unique
scheme turned out to be single linkage HC. There seems to exist an agree-
ment that amongst hierarchical methods, SL is the one with best theoretical
properties, see also the results of Jardine and Sibson in this respect [10].

However, single linkage has frequently been severely criticized for the
chaining effect it exhibits (see [13] and [17, pp. 296]): SL will disregard the
density of samples in a region and may tend to connect two dense clusters
when just a few isolated samples produce a chain connecting them. This has
had the effect that in practice other clustering methods are typically preferred
over SL. Practicioners tend to favour average (AL) or complete (SL) linkage,
which are deemed more sensitive to variations of density in datasets. How-
ever, since AL and CL are actually unstable [10, Section 7.4] in a precise sense,
there is a blatant inconsistency between the conclusions of theoretical studies
and practical applications of clustering algorithms.

Clustering can be regarded as a statistical problem if we consider the
dataset X � tx1, . . . , xnu � X as a sample from some unknown probability
measure µX defined on the Borel sets of a metric space pX, dXq. Consider
for the sake of simplicity that X is Euclidean space Rd and that µX is a
measure with density ρ. The two main statistical approaches to clustering
are the parametric approach and the nonparametric approach. The former
approach is based on the assumption that each group i is represented by a
density ρi that is a member of some parametric family. The density ρ is then a
mixture of the group densities, and the number of components in the mixture
together with the parameters values are estimated from the data. The latter
approach assumes that groups correspond to modes of the density ρ. Searching
for modes as a manifestation of the presence of groups can be traced back to
D. Wisharts paper [17].

With regards to the chaining effect: it is well understood that one of the
shortcomings of SL is its insensitivity to density. In this direction, a classical
result of Hartigan [8] proves that SL is not consistent in the sense that it
is unable to recover modes of an underlying density in Rd for all d. In [17]
Wishart proposes one level mode analysis as an obvious approach to the ame-
lioration of the chaining effect. The idea is to remove from the observational
data all the points that appear to be noise. Define the superlevel set Lρpσq of
a density ρ at level σ as the subset of the underlying space X for which the
density exceeds σ: Lρpσq � tx|ρpxq ¡ σu. Then, if pρ is some estimate of ρ and
σ a given threshold, the idea consists of applying SL clustering to L

pρpσq.
In [9, Section 11] and [8], Hartigan expanded on Wishart’s idea and made

it more precise: he defined the high density clusters at level σ as the connected
components of Lρpσq. Hartigan also pointed out that the collection of high
density clusters has a hierarchical structure: for any two clusters A and B
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(possibly at different levels) either A � B or B � A or A X B � H. This
hierarchical structure is summarized by the cluster tree of ρ.

More recent instantiations of the one level mode analysis idea can be found
in [7, 5, 2]. Tipycally, methods roughly consist of four steps: (1) for each
data point calculate a density estimate pρ; (2) choose a density threshold σ
and construct L

pρpσq; (3) construct a graph interconnecting all observations
in L

pρpσq within distance ε of each other; (4) define the clusters to be the
connected components of this graph.

As was pointed out in [15], a well known weakness of the one level mode
analysis is that the degree of separation between connected components of
Lρpσq, and therefore of L

pρpσq, depends critically on the choice of the density
threshold σ, which is left to the user. Moreover, there might not be a single
value of σ that uncovers all the modes. In [17], citing this difficulty Wishart
proposed hierarchical mode analysis, which can be regarded as a procedure
for computing the cluster tree of a density estimate pρ. The work of Wong and
Lane [18] provides a method of estimating the cluster tree of a density by a
construction based on k-nearest neighbor density estimates.

In [16] Stuetzle gives a precise recursive definition of the cluster tree. Stuet-
zle’s method estimates the cluster tree of the density by computing the cluster
tree of the nearest neighbor density estimate and then pruning branches be-
lieved to correspond to spurious modes. In [15] the authors present a general-
ization of Stuetzle’s method to other density estimates. It is already expressed
in the work of Stuetzle and Nugent that it is desirable to prove that the cluster
tree estimates one constructs are stable to perturbations in the data. Further-
more, the issue of convergence of the sample based cluster tree has to be
resolved, see the discussion in [18]. Similar ideas are also present in the work
of Klemelä [12].

The construction implicit in many of the methods we mentioned can be
paraphrased as follows. Assume pX, dX , fq is given where pX, dXq is a finite
metric space and f : X Ñ R is a given function (which could be a density
estimate). For each σ let Xσ :� Lf pσq. For a given ε ¡ 0 consider the graph
Gε,σ � pXσ, Eε,σq with Eε,σ � tpx, x1q P Xσ � Xσ| dXpx, x

1q ¤ ε, i � ju.
Then, obtain a one-mode-analysis type of summary by computing the con-
nected components of Gε,σ. Clearly, this set up can be used for estimating the
cluster tree of f as well by following a recursive procedure such as the one
delineated by Stuetzle.

The proposal in this paper hinges on the idea that there is more informa-
tion contained in the whole collection of graphs tGε,σuε¥0,σ¥0 than just an
estimate or a family of estimates (one for each ε) of the cluster tree. Much
in the same way as single mode analysis suffers from a particular choice of
the density threshold, a procedure that tries to estimate the cluster tree from
tGε0,σuσ¥0 for a fixed ε0 will be affected by having made fixed choice for the
spatial (metric dependent) scale ε0. We claim that it may in fact be more
informative to encode all possible choices of scale into an invariant richer
than just a single cluster tree. The invariant we construct out of the family
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tGε,σuε¥0,σ¥0 can be regarded as a generalization of both hierarchical clus-
tering and the cluster tree. In fact, a slice of the invariant for a fixed value of
ε yields a cluster tree estimate, whereas a slice for a fixed value of σ yields the
dendrogram corresponding to applying HC to Xσ, i.e. a single mode analysis
snapshot. Our construction therefore takes into account both the linkage pa-
rameter ε and σ, a parameter related to the function f (e.g. density). This is
to be regarded as multiparameter clustering.

In this paper, we produce a variation of the theme in [4]. By first iden-
tifying desirable properties of such multi-parameter clustering procedures,
we then propose a set of axioms for such methods. We prove a unique-
ness/characterization theorem (Theorem 1) under these axioms. The proce-
dure singled out by this set of axioms can be regarded as a generalization
of both SL HC and the cluster tree construction. In addition, in Theorem
2 we establish the precise quantitative (or metric) stability of the particular
clustering scheme which is characterized by our results.

Our presentation is necessarily concise given the space constraints; more
details and elaboration will be presented in a future publication.

2 Notation and Terminology

Let X denote the collection of all finite metric spaces. Let X1 be the collection
of all finite filtered metric spaces, that is triples pX, dX , fXq where pX, dXq P
X and fX : X Ñ R. Given pX, dX , fXq P X1, for each σ P R let Xσ �
f�1
X pp�8, σsq. For a finite set X and a symmetric function W : X �X Ñ R�

let LpW q denote the maximal metric on X less than or equal to W , i.e.
LpW qpx, x1q � min t

°m
i�0W pxi, xi�1q|x � x0, . . . , xm � x1,m P Nu for x, x1 P

X. For a finite metric space pX, dXq, seppX, dXq denotes the minimal distance
between any two different points in X. When referring to a metric space
pX, dXq or to a filtered metric space pX, dX , fXq we may drop the metric and
filter and refer to it by just X. For a topological space S, BpSq denotes the
collection of Borel sets of S. Given a set Z, for a function h : Z Ñ R, we use
the notation }h}L8pZq � supzPZ |hpzq|.

3 Two Parameter Hierarchical Clustering: a
Characterization Theorem

Definition 1 (Persistent Structures). Given a finite set X, a persistent
structure on X is a map QX : X �X Ñ BpR� � Rq s.t.

1. If pε, σq P QXpx, x1q, then pε� t, σ � sq P QXpx, x
1q for all t, s ¥ 0.

2. If pε1, σ1q P QXpx, x
1q and pε2, σ2q P QXpx

1, x2q, then
�

maxpε1, ε2q,maxpσ1, σ2q
�
P

QXpx, x
2q.

3. For all x, x1 P X, BQXpx, x1q � QXpx, x
1q (technical condition).

Example 1. Let ∆ � tp, qu and Q∆ be given by the Figure 1, where α, β, δ ¥ 0.
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Q∆ (p, p) Q∆ (q,q) Q∆ (p, q)

Fig. 1. A simple persistence structure on tp, qu: Q∆.

Remark 1. Persistent structures are useful constructs for expressing nested
associations of points. They can be regarded as a certain generalization of
the concept of ultrametrics and therefore of dendrograms (nested families of
partitions). In fact, one can see that a persistence structure Q on X gives rise
to a family of ultrametrics on X.

We use the language of categories and functors, see [4] for an exposition
relevant to clustering and [14] for a comprehensive account. Below, Sets de-
notes the category whose objects are sets and whose morphisms are set maps.

Consider the category Q whose objects are pairs pX,QXq where X is a
finite set and QX is a persistent structure on X. Let Q denote the objects
in Q. A map φ : X Ñ Y is called persistence preserving if for all x, x1 P
X, QXpx, x1q � QY pφpxq, φpx

1qq. We declare that MorQppX,QXq, pY,QY qq
consists of all persistence preserving maps between X and Y . We defineMgen

to be the category that has all finite filtered metric spaces as objects, and as
morphisms all those maps that are distance non-increasing and filter non-
increasing. That is, φ P MorMgenpX,Y q if and only if for all x, x1 P X,
dXpx, x

1q ¥ dY pφpxq, φpx
1qq and fXpxq ¥ fY pφpx

1qq.
In this context, a clustering functor will be a functor C : Mgen Ñ Q.

Consider the equivalence relation on Xσ given by x �pε,σq x
1 if and only if

there exists x0, . . . , xm in X s.t. x0 � x, xm � x1, maxi dXpxi, xi�1q ¤ ε and
maxi fXpxiq ¤ σ. For x P Xσ let rxspε,σq denote the equivalence class to which
x belongs.

Example 2. Consider the functor C� : Mgen Ñ Q that when applied to
pX, dX , fXq produces the object (persistent structure) pX,Q�Xq whereQ�Xpx, x

1q :� 
pε, σq P R2|x �pε,σq x

1
(
. That C� is a functor follows easily from the defini-

tions. The following observations are in order:

• The setsQ�Xpx, x
1q are obviously unbounded. They are of the form

�K
i�1rε

piq,8q�

rσ
piq
1 ,8q. Note that for x P X, Q�Xpx, xq � tpε, σq P R2| ε ¥ 0, σ ¥ fXpxqu.

• LetB � rxspε,σq � rx1spε,σq � B1. Then, clearly, minxPB,x1PB1 dXpx, x1q ¡ ε.
• If pε, σq are s.t. seppXσ, dXq ¡ ε, then pε, σq R Q�Xpx, x

1q for all x, x1

in Xσ with x � x1. Indeed, otherwise let x, x1, x0, . . . , xn P X be s.t.
x0 � x, xn � x1, dXpxi, xi�1q ¤ ε and fXpxiq ¤ σ. Since xi P Xσ for
i P t0, . . . , nu, and x � x1, there are at least two different consecutive points
in tx0, x1, . . . , xnu whose distance is not greater than ε, a contradiction.
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• For t ¥ 0 let σtX : X �X Ñ R be defined by px, x1q ÞÑ inf
 
σ|x �pt,σq x

1
(
.

This gives rise to a tree and can be likened to the cluster tree construction
of Stuetzle.

We have the following characterization/uniqueness theorem.

Theorem 1. Let C : Mgen Ñ Q be a functor which satisfies the following
conditions.

(I) Let α : Mgen Ñ Sets and β : Q Ñ Sets be the forgetful functors
pX, dX , fXq Ñ X and pX,QXq Ñ X, which forget the metric and fil-
ter, and persistence structure, respectively, and only “remember” the un-
derlying sets X. Then we assume that β � Ψ � α. This means that the
underlying set of the persistent structure associated to a metric space is
just the underlying set of the metric space.

(II) For δ ¥ 0 and α, β P R let ∆pδ, α, βq � ptp, qu,
�

0 δ
δ 0

�
, tα, βuq denote the

two point filtered metric space with underlying set tp, qu, where distpp, qq �
δ and f∆ppq � α and f∆pqq � β. Then Cp∆pδ, α, βqq is the persistent
structure ptp, qu, Q∆q whose underlying set is tp, qu and where Q∆ is given
by the construction shown in Figure 1.

(III) Given pε, σq P R� � R and finite filtered metric space pX, dX , fXq, then
seppXσq ¡ ε implies that pε, σq R QXpx, x1q for any x, x1 P Xσ, x � x1.

Then C is equal to the functor C�.

Proof. We sketch the proof. Let pX, dX , fXq be a finite filtered metric space.
Write pX,QXq � CpX, dX , fXq. Also, write pX,Q�Xq � C�pX, dX , fXq.
(1) Let x, x1 P X and pε, σq P R��R be s.t. pε, σq P QXpx, x1q. We will prove
that pε, σq P Q�Xpx, x

1q as well. Consider the filtered metric space pX 1, d1, f 1q
where X 1 � Xz �pε,σq. Let φ : X Ñ X 1 be given by x ÞÑ rxspε,σq. For
α, β P X 1 let W pα, βq :� minxPφ�1pαq, x1Pφ�1pβq dXpx, x

1q. Note that by the
discussion in Example 2, minα�βW pα, βq ¡ ε for α, β P X 1. Define d1 to
be the maximal metric pointwisely less than or equal W , i.e. d1 � LpW q.
Finally , let f 1 : X 1 Ñ R be given by α ÞÑ minxPφ�1pαq fXpxq. Note that by
construction, X 1

σ � X 1 and seppX 1, d1q ¡ ε.
Now, also by construction it holds that φ P MorMgenpX,X 1q. By func-

toriality we then have QX � QX1 � pφ, φq, and in particular, we have that
pε, σq P QX1pφpxq, φpx1qq. Note that we must have φpxq � φpx1q for other-
wise, condition (III) together with seppX 1, dX1q ¡ ε give a contradiction. This
means that rxspε,σq � rx1spε,σq, hence, by definition of C�, pε, σq P Q�Xpx, x

1q.
(2) Let x, x1 P X and pε, σq P R� � R be s.t. pε, σq P Q�Xpx, x

1q. Let
x � x0, x1, . . . , xt � x1 be points in Xσ s.t. maxi dXpxi, xi�1q ¤ ε. Fix
i P t0, 1, . . . , t � 1u. Consider the two point filtered metric space ∆pε, σ, σq
and the map ψ : ∆ Ñ X given by ψppq � xi and ψpqq � xi�1. Note that by
construction ψ PMorMgenp∆,Xq. Then, Q∆ � QX �pψ,ψq, and in particular
(check Figure 1), pε, σq P QXpxi, xi�1q. Since i was arbitrary, by applying
property 2. in the Definition 1 repeatedly, we obtain that pε, σq P QXpx, x1q.
This concludes the proof.
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Example 3. As a simple practical tool for the analysis of data one could use
the following construction: for a given triple pX, d, fq let KX : R� � R Ñ N
be given by pε, σq ÞÑ #

�
Xσz �pε,σq

�
, i.e. the number of equivalence classes of

Xσ under �pε,σq.

4 Metric Stability of C�

For sets A and B, a subset R � A � B is a correspondence (between A and
B) if and and only if (1) @ a P A, there exists b P B s.t. pa, bq P R; and (2)
@ b P B, there exists a P X s.t. pa, bq P R. Let RpA,Bq denote the set of all
possible correspondences between sets A and B.

Consider compact metric spaces pX, dXq and pY, dY q. Let ΓX,Y : X �
Y
�
X � Y Ñ R� be given by px, y, x1, y1q ÞÑ |dXpx, x

1q � dY py, y
1q|.

Then, the Gromov-Hausdorff distance [3] between X and Y is given by
dGHpX,Y q :� infRPRpX,Y q }ΓX,Y }L8pR�Rq. The Gromov-Hausdorff distance
is a metric on the collection of all isometry classes of compact metric spaces
[3]. We modify the expression of the Gromov-Hausdorff distance in order to
define a metric for filtered metric spaces. We deem two spaces X,Y in X1

isomorphic whenever there exists an isometry Ψ : pX, dXq Ñ pY, dY q such
that fpxq � g � Ψpxq for all x P X.

Definition 2. Let D : X1 � X1 Ñ R� be given by

DpX,Y q :� min
RPRpX,Y q

max
�
}ΓX,Y }L8pR�Rq, }fX � fY }L8pRq

�
, X, Y P X1.

Proposition 1. The function D defined above is a metric on (the set of iso-
morphism classes of) X1.

We say that two persistent structures pX,QXq and pY,QY q are isomorphic
and write pX,QXq � pY,QY q, if and only if there exist a bijection Φ : X Ñ Y
s.t. QY � QX � pΦ,Φq. We define a metric on the collection Q of all persistent
structures by

dQpX,Y q :� min
RPRpX,Y q

max
px,yq,px1,y1qPR

d
pR2,L8q
H

�
QXpx, x

1q, QY py, y
1q
�

(1)

In (1) above, dpR
2,L8q

H stands for the Hausdorff distance ([3]) on subsets of
the plane under the L8 metric.

Proposition 2. dQ defines a metric on (the isomorphism classes of) Q.

Now one has stability on the functor C�, i.e. the application pX, dX , fXq ÞÑ
pX,Q�Xq is stable in an appropiate sense.

Theorem 2. For two filtered spaces pX, dX , fXq and pY, dY , fY q in X1 con-
sider the associated persistent structures pX,Q�Xq and pY,Q�Y q defined in Ex-
ample 2. Then, one has dQppX,Q�Xq, pY,Q

�
Y qq ¤ DpX,Y q.
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stability. In Gábor Lugosi and Hans-Ulrich Simon, editors, COLT, volume 4005
of Lecture Notes in Computer Science, pages 5–19. Springer, 2006.
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12. Jussi Klemelä. Visualization of multivariate density estimates with level set
trees. J. Comput. Graph. Statist., 13(3):599–620, 2004.

13. G. N. Lance and W. T. Williams. A general theory of classificatory sorting
strategies 1. Hierarchical systems. Computer Journal, 9(4):373–380, February
1967.

14. Saunders Mac Lane. Categories for the working mathematician, volume 5 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,
1998.

15. W. Stuetzle and R. Nugent. A generalized single linkage method for estimating
the cluster tree of a density, 2008.

16. Werner Stuetzle. Estimating the cluster type of a density by analyzing the
minimal spanning tree of a sample. J. Classification, 20(1):25–47, 2003.

17. D. Wishart. Mode analysis: a generalization of nearest neighbor which reduces
chaining effects. In Numerical Taxonomy, pages 282–311. Academic Press, 1969.

18. M. Anthony Wong and Tom Lane. A kth nearest neighbour clustering procedure.
J. Roy. Statist. Soc. Ser. B, 45(3):362–368, 1983.


