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Background concepts

e Metric Space. A metric space is a pair (X,d) where X is a set and
d: X x X — RT s.t.

1. For all x,y,z € X, d(x,y) < d(z,z) +d(z,y).
2. For all z,y € X, d(x,y) = d(y, x).
3. d(x,y) =0 if and only if x = y.

e Folklore Lemma. Let X, = {x1,...,2,} and Y,, = {y1,...,yn} be
points in R*. If

|z — 25l = llyi — y;l

for all 4, j, then there exists a rigid isometry T : R*¥ — RF s.t.

T(x;) = y;, for all i




Let D(X,,) and D(Y,,) be the Euclidean interpoint distance matrices of X,
and Y,,, respectively. Then, the Folklore Lemma tells us that

D (Xn) ~perm D (Ym)

0

Xn rigid—iso Ym




e Hausdorff distance. For (compact) subsets A, B of a (compact) metric
space (Z,d), the Hausdorff distance between them, d%,(A, B), is defined

to be the infimal € > 0 s.t.

A C B®

and
B C A®

where A®* ={z € Z|d(z,A) < }.

Equivalently,

Z _ . .
dy/ (A, B) = max(rgleaé{ min d(a,b), max min d(a,b))




Geodesic distance vs Euclidean distance




Geodesic distance: invariance to ‘bends’




























The GH distance for Shape Comparison

e Regard shapes as (compact) metric spaces, [MS04], [MS05].

e The metric with which one endows the shapes depends on the desired
invariance. For example, if invariance to

— rigid isometries is desired, use Euclidean distance (remember Folk-
lore Lemma,).

— bends 1s desired, use ”geodesic” distance.

Let X denote set of all compact metric spaces. Define GH distance (met-
ric) on X, then (X, dgy) is itself a metric space.

GH distance provides reasonable framework for Shape Comparison: good
theoretical properties.

However, it leads to difficult optimization problems.




GH: definition

dogn(X,Y) = inf dZ(f(X).g(Y))

Z,f,g




It would be much more intuitive to compare the metrics dx and dy directly..

For maps f : X — Y, and g: Y — X compute

dist(f) = max |dx (z,z") — dy (f(x), f(z))]

x,r’

and

dist(g) = max|dy (y,4) — dx(9(y), 9(y))|

and then minimize max(dist(f), dist(g)) over all choices of f and g.
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correspondences

Definition [Correspondences]

For sets A and B, a subset R C A x B is a correspondence (between A and B)
if and and only if

e Vac€ A, there exists b € B s.t. (a,b) € R

e Vb€ B, there exists a € A s.t. (a,b) € R

Let R(A, B) denote the set of all possible correspondences between sets A
and B.

Note that in the case n4 = npg, correspondences are larger than bijections.




correspondences

Note that when A and B are finite, R € R(A, B) can be represented by a
matrix ((rqp)) € {0,1}"4%"5B s.t.

E:m521Vb€B

aEA

}:mb21Va€A

beB
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Another expression for
the GH distance

A theorem, [BuBulv]
For compact metric spaces (X,dx) and (Y, dy),

1
der(X,Y) = —int d " —d /
gr(X,Y) = o in omax | dx(z,2") —dy(y,y')

8



Main Properties

. Let (X,dx), (Y,dy) and (Z,dz) be metric spaces then

dgH(X7 Y) < dgH(X7 Z) T dgH(Yv Z)

I dgn(X,Y) =0 and (X,dx), (Y,dy) are compact metric spaces, then
(X,dx) and (Y, dy ) are isometric.

. Let X, ={x1,...,2,} C X be a finite subset of the compact metric space
(X, dx) Then,

. For compact metric spaces (X,dx) and (Y, dy):

1
5 [diam(X) — diam(Y)| < dgn(X,Y)

% max (diam(X ), diam(Y"))
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Stability, [MS05]

|dgH(X7 Y) o dQ’H(XnaYmN < T(Xn) + T(Ym)

for finite samplings X,, € X and Y,, C Y, where r(X,,) and r(Y,,) are the
covering radii.
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Stability, [MS05]

|dgH(X7 Y) — dQ”H(XTquN < T(Xn) T T(Ym)
(U )

for finite samplings X,, € X and Y,, C Y, where r(X,,) and r(Y,,) are the
covering radii.




Critique

e Was not able to show connections with (sufficiently many) pre-existing

approaches such as Shape Distributions, Shape Contexts, Hamza-Krim,
Frosini et al.

e Computationally hard: currently only two attempts have been made:

— [MS04,MS05] and [BBKO06] only for surfaces.

— [MSO05] gives probabilistic guarantees for estimator based on sampling
parameters.

— Full generality leads to a hard combinatorial optimization prob-

lem: QAP.
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approaches such as Shape Distributions, Shape Contexts, Hamza-Krim,
Frosini et al.

e Computationally hard: currently only two attempts have been made:

— [MS04,MS05] and [BBKO06] only for surfaces.

— [MSO05] gives probabilistic guarantees for estimator based on sampling
parameters.

— Full generality leads to a hard combinatorial optimization prob-

lem: QAP.

Desiderata

e Obtain an L? version of the GH distance that:

— retains theoretical underpinnings

— its implementation leads to easier (continuous, quadratic, with linear
constraints) optimization problems

— can be related to pre-existing approaches (shape contexts, shape dis-
tributions, Hamza-Krim,..) via lower/upper bounds.
19




First attempt: naive relaxation

Remember that

1
dg1(X,Y) = = inf d N —d ’
gn(X,Y) =7 in Lopmax dx (v,27) — dy (y, ')

where R € R(X,Y ). Using the matricial representation of R one can write

1.
don(X,Y) = 5 inf max |dx(x,2") —dy (y,y")|Te.y Ty

R xz,xy,y’

where R = ((rz,)) € {0,1}"X*"B s.t.

Z"“a:yZl VyetY
re X

er21Va¢€X

yey
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First attempt: naive relaxation (continued)

e The idea would be to use L? norm instead of L*° (max max)

e relax r,, to bein [0, 1] (!)

Then, the idea would be to compute (for some p > 1):

1/p

~ 1
don(X,Y) = ginf | D0 ldx(2,0)) = dy ()P oy

R

/ /
aj7x 7y7y

where R = ((rz,)) € [0,1]"* """ s.t.

ery21Vy€Y
reX

ery21Vaz€X

yey
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e The resulting problem is a continuous variable QOP with linear con-
straints, but..

e there is no limit problem.. this discretization cannot be connected to the
GH distance..

we need to identify the correct relaxation of the GH distance. More precisely.
the correct notion of relaxed correspondence.




More background

Consider a finite set A = {a1,...,a,}. A set of weights, W = {w1,...,w,} on
A is called a probability measure on A if w; > 0 and ) . w; = 1.

Probability measures can be interpreted as a way of assigning (relative) impor-
tance to different points.

There is a more general definition that we do not need.




correspondences and
measure couplings

Let A and B be compact subsets of the compact metric space (X,d) and pa
and pup be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure 4 on A x B s.t. (in
the finite case this means ((uqp)) € [0, 1]"4%"B)

o > tiay = pp(b) Vb B

° ZbEB Uab = ,LLA(CL) Va € A

Let M(pua,pup) be the set of all couplings of 4 and up.
Notice that in the finite case, ((uq,)) must satisfy ng + np linear constraints.

24



The support of the coupling consists of the non-zero entries.
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L? Gromov-Hausdorff distances [MOT7]

Compute (for some p > 1):

1
D,(X,Y) = ; inf

where = ((tzy)) € [0, 1]"* ™ s

2 Hey =

re X

D Hay =

yey

This is a QOP with linear constrains! Also, thanks to concepts from measure
theory, there is a continuous conterpart (sampling theory)
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Numerical Implementation

e The numerical implementation of the second option leads to solving a
continuous variable QOP with linear constraints:

ming; %UTI‘U
S.t. Uij S [O, 1], UA =D

where U € R™X*"Y ig the unrolled version of p, I' € RPX X"y XX XNy g
the unrolled version of I'y y and A and b encode the linear constrains

e M(ux, py).

e This can be approached for example via gradient descent. The QOP is
non-convex in general!

e Initialization is done via solving one of the several lower bounds (discussed
ahead). All these lower bounds lead to solving LOPs.




Shapes as mm-spaces, |MOT7]

e Now we are talking of triples (X,dx,ux) where X is a set, dx a metric
on X and px a probability measure on X.

e These objects are called measure metric spaces, or mm-spaces for short.

e two mm-spaces X and Y are deemed equal or isomorphic whenever there
exists an isometry ® : X — Y s.t. uy(B) = ux(®1(B) for all (measur-
able) sets B C Y.

X7dX7lLLX







Properties of D,, [MO07]

1. Let X,Y and Z mm-spaces then

D,(X,Y) < D,(X,Z)+D,(Y, 2).

2. If D,(X,Y) =0 if and only if X and Y are isomorphic.

3. Let X,, ={x1,...,2,} C X be a subset of the mm-space (X, d,v).
Endow X,, with the metric d and a prob. measure v,,, then

D,(X,X,) <dw.,(v,vn).




The parameter p is not superfluous

The simplest lower bound one has is based on the triangle inequality plus

2. D, (X, {q}) = ( /X dx(@a) V(dx)y(da:’)>1/p = diam,(X)

That is |
Dp(X, Y) > §|diamp(X) — diamp(Y)|

For example, when X = S™ (spheres with uniform measure and usual in-
trinsic metric):

e p = o0 gives diam,(S™) =x for all n € N

e p=1 gives diam;,(S™) = n/2 for all n € N

e p =2 gives diamy(S!) = 7/v/3 and diamy(S?) = /72/2 — 2




Connections with other approaches

Shape Distributions [Osada-et-al]

Shape contexts [SC]

Hamza-Krim, Hilaga et al approach [HK]

Rigid isometries invariant Hausdorff [Goodrich]
Gromov-Hausdorff distance [MS04| [MS05]
Elad-Kimmel idea [EK]

Topology based methods
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Upper and Lower bounds Let (X,d,v) be an mm-space.

e Shape Distributions |Osada-et-al|: construct histogram of interpoint
distances, Fx : R — |0, 1] given by

[ t—vv({(x,z)dzz") <t}) J

Shape Contexts [SC|: at each © € X, construct histogram of d(z, ),
Cx : X xR — |0,1] given by

(z,t) = v ({2 d(z,2) < t})

Hamza-Krim [HK]: at each x € X compute mean distance to rest of

points, Hx : X — R
1/p
T (/ dp(a:,a:')u(dx’)>
X

Wasserstein under Euclidean isometries: consider X,Y C R? and

compute |
(X, Y) = inf dy (X, T(Y))

Gromov-Hausdorff distance [MS04|[MS05][BBK06]
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Upper and Lower bounds Let (X,d,r) be an mm-space.

e Shape Distributions [Osada-et-al-01]: construct histogram of interpoint
distances, F'x : R — |0, 1] given by
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The bound for the H-K approach

Let p = 1 for simplicity. For a mm-space (X, dx, ux) let|sx : X — RT|be given by

[ T Z pux (') dx(x, x’)J (average distance to all other points).
x'eX

The HK lower bound, denoted by LBk (X,Y) is defined to be (the mass transportation problem)

[ LBHK(X,Y): min Zu T, |8X —SY( )| J

HEM (px,py) 2

Proposition 1 ([MO07]). For all mm-spaces X and Y,

1
SLBrk(X,Y) < Di(X,Y)

Proof is simple:
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Let p = 1 for simplicity. For a mm-space (X, dx, ux) let|sx : X — RT|be given by

[ T Z pux (') dx(x, x’)J (average distance to all other points).
x'eX

The HK lower bound, denoted by LBk (X,Y) is defined to be (the mass transportation problem)

LB X,Y):= min x S )—s
HEK( ) MeM(MX,W)ZM ) |sx( y ()l

Proposition 1 ([MO07]). For all mm-spaces X and Y,

1
{ SLBrk(X,Y) < Di(X,Y)

Proof is simple:




Proof. Take any u € M(ux,py) and write

ZZ ‘dXxx)_dY(y y)‘,u(ac y) u(x',y') =

x,y x’ y

20 2 @ y) (dx(@,2)) — dv (v, ) | (e, y) =

LY wlay,

Z Z w@',y') (dx (z,2) —dy (y,9)) | p(z,y) =

T,y mlay,
~ J
N~

{Z,u(x’y )dx (z,x") ZdX,CE.CC Z Z,LLX dxxa:)zsx(x)}

1o
Yy

Y sx (z) = sy ()] wlz, y) =

L,y

LBk (X,Y)

The last inequality follows since pu was arbitrary and LBy was defined as the minimum.
To finish the proof, take the min over all choices of p in M (ux, puy ) and recall definition of D;.




Some Experiments

Some experimentation: ~ 70 models in 7 classes. Classification using 1-nn:
P, ~ 2%. Hamza-Krim gave ~ 15% on same db with all same parameters etc.




Discussion

Identifying a notion of distance/metric between shapes is useful /important.

e When will you say that two shapes are the same? This is the zero of your
distance between shapes.

e Having a true metric on the space of shapes permits proving stability and
having a sampling theory.

e Understand hierarchy of lower/upper bounds. When is a particular LB
better than another? study highly symmetrical shapes.




Discussion

Implementation is easy: Gradient descent or alternate opt.

Solving lower bounds yields a seed for the gradient descent. These lower
bounds are compatible with the metric in the sense that a layered recog-
nition system is possible: given two shapes, (1) solve for a LB (this gives
you a ), if value small enough, then (2) solve for GW using the u as seed
for your favorite iterative algorithm.

Easy extension to partial matching— preprint available from my webpage
SOOM.

Interest in relating GH/GW ideas to other methods in the literature. In-
terrelating methods is important also for applications: when confronted
with N methods, how do they compare to each other? which one is better
for the situation at hand?

— FEuclidean case.

— Persistent Topology based methods (Frosini et al., Carlsson et al.)

No difference between continuous and discrete. Probability measures take
care of the ’transition’.

http://math.stanford.edu/"memoli/ShapeComp/sc.html
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