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The GH distance for Shape Comparison, [MS04,05]

• Regard shapes as (compact) metric spaces. Let X denote set of all compact
metric spaces. Define metric on X , then (X , dGH) is itself a metric space.

• The metric with which one endows the shapes depends on the desired
invariance. For example, if invariance to

– rigid isometries is desired, use Euclidean distance.
– bends is desired, use ”intrinsic” distance.

• GH distance provides reasonable framework for Shape Comparison: good
theoretical properties.



Main Properties
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1. L et (X, dX ), (Y, dY ) and (Z, dZ ) be metric spaces then

dGH(X, Y ) ≤ dGH(X, Z ) + dGH(Y, Z ).

2. If dGH(X, Y ) = 0 and (X, dX ), (Y, dY ) are compact metric spaces, then
(X, dX ) and (Y, dY ) are isometric.

3. L et Xn = {x1, . . . , xn} ⊂ X be a fini te subset of the compact met ric space
(X, dX ). T hen,

dGH(X, Xn) ≤ dH(X, Xn).

4. For compact metric spaces (X, dX ) and (Y, dY ):

1
2
|diam(X ) − diam(Y )| ≤ dGH(X, Y )

≤ 1
2

max (diam(X ), diam(Y ))



Stability

|dGH(X, Y )− dGH(Xn, Ym)| ≤ r(Xn) + r(Ym)

for finite samplings Xn ⊂ X and Ym ⊂ Y , where r(Xn) and r(Ym) are the
covering radii.
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Critique

• Was not able to show connections with (sufficiently many) pre-existing
appraches

• Computationally hard: currently only two attempts have been made:

– [MS04,MS05] and [BBK06] only for surfaces.
– [MS05] gives probabilistic guarantees for estimator based on sam-

pling parameters.
– Full generality leads to a hard combinatorial optimization prob-

lem: QAP.
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Desiderata

• Obtain an Lp version of the GH distance that:

– retains theoretical underpinnings

– its implementation leads to easier (continuous, quadratic, with linear
constraints) optimization problems

– can be related to pre-existing approaches (shape contexts, shape dis-
tributions, Hamza-Krim,..) via lower/upper bounds.

Critique

• Was not able to show connections with (sufficiently many) pre-existing
appraches

• Computationally hard: currently only two attempts have been made:

– [MS04,MS05] and [BBK06] only for surfaces.
– [MS05] gives probabilistic guarantees for estimator based on sam-

pling parameters.
– Full generality leads to a hard combinatorial optimization prob-

lem: QAP.



(Kantorovich, Rubinstein, Earth Mover’s Distance, Mass Transportation)
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Gromov-Hausdorff

⇓

Gromov-Wasserstein



correspondences
and the Hausdorff distance
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Definition [Correspondences]

For sets A and B, a subset R ⊂ A×B is a correspondence (between A and B)
if and and only if

• ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R

• ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R

Let R(A, B) denote the set of all possible correspondences between sets
A and B. Note that in the case nA = nB, correspondences are larger than
bijections.



correspondences
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Note that when A and B are finite, R ∈ R(A, B) can be represented by a
matrix ((ra,b)) ∈ {0, 1}nA×nB s.t.

∑

a∈A

rab ≥ 1 ∀b ∈ B

∑

b∈B

rab ≥ 1 ∀a ∈ A



correspondences

Proposition
Let (X, d) be a compact metric space and A, B ⊂ X be compact. Then

dH(A, B) = inf
R∈R(A,B)

‖d‖L∞(R)

9

Note that when A and B are finite, R ∈ R(A, B) can be represented by a
matrix ((ra,b)) ∈ {0, 1}nA×nB s.t.

∑

a∈A

rab ≥ 1 ∀b ∈ B

∑

b∈B

rab ≥ 1 ∀a ∈ A



A B
a1

a2

a3

a4

b1

b2

b3

• Edges have weights: if e = (i, j), we = d(ai, bj).

• Interpret A and B as two groups of people that know each other.

• Interpret the value of we as the degree of animosity between ai and bj .

• What is the subset L of edges that leaves no point in A ∪B isolated that
minimizes the maximal weight:

max
e∈L

we

that is

• We want minimize the maximal animosity.



correspondences and 
measure couplings
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Let (A, µA) and (B, µB) be compact subsets of the compact metric space (X, d)
and µA and µB be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure µ on A×B s.t. (in
the finite case this means ((µa,b)) ∈ [0, 1]nA×nB )

•
∑

a∈A µab = µB(b) ∀b ∈ B

•
∑

b∈B µab = µA(a) ∀a ∈ A

Let M(µA, µB) be the set of all couplings of µA and µB.
Notice that in the finite case, ((µa,b)) must satisfy nA + nB linear constraints.



correspondences and 
measure couplings
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Proposition [(µ↔ R)]

• Given (A, µA) and (B, µB), and µ ∈M(µA, µB), then

R(µ) := supp(µ) ∈ R(A, B).

• König’s Lemma. [gives conditions for R→ µ]



Wasserstein distance
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dH(A, B) = inf
R∈R(A,B)

‖d‖L∞(R)

⇓ (R ↔ µ)

dW,∞(A, B) = inf
µ∈M(µA,µB)

‖d‖L∞(R(µ))

⇓ (L∞ ↔ Lp)

dW,p(A, B) = inf
µ∈M(µA,µB)

‖d‖Lp(A×B,µ)
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GH distance
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dGH(X, Y ) = inf
Z,f,g

dZ
H(f(X), g(Y ))

GH: definition
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It is enough to consider Z = X ! Y and then we obtain

dGH(X, Y ) = inf
d

d(Z,d)
H (X, Y )

Recall:
Proposition
Let (X, d) be a compact metric space and A, B ⊂ X be compact.
Then

dH(A, B) = inf
R∈R(A,B)

‖d‖L∞(R)



correspondences and 
GH distance
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The GH distance between (X, dX) and (Y, dY ) admits the following expression:

d(1)
GH(X, Y ) = inf

d∈D(dX,dY )
inf

R∈R(X,Y )
‖d‖L∞(R)

where D(dX , dY ) is a metric on X " Y that reduces to dX and dY on X × X
and Y × Y , respectively.

( X Y

X dX D
Y DT dY

)
= d

In other words: you need to glue X and Y in an optimal way. Note that
D consists of nX × nY positive reals that must satisfy ∼ nX · CnY

2 + nY · CnX
2

linear constraints.



Another expression for 
the GH distance
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For compact spaces (X, dX) and (Y, dY ) let

d(2)
GH(X, Y ) =

1
2

inf
R

max
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|

We write, compactly,

d(2)
GH(X, Y ) =

1
2

inf
R
‖dX − dY ‖L∞(R×R)



Equivalence thm:
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Theorem [Kalton-Ostrovskii]
For all X, Y compact,

d(1)
GH d(2)

GH

infd,R ‖d‖L∞(R)
1
2 infR ‖dX − dY ‖L∞(R×R)



Relaxing the notion of 
correspondence
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d(1)
GH d(2)

GH

infd,R ‖d‖L∞(R)

!!

1
2 infR ‖dX − dY ‖L∞(R×R)

!!
infd,µ ‖d‖Lp(µ)

1
2 infµ ‖dX − dY ‖Lp(µ⊗µ)

d(1)
GW ,p d(2)

GW,p
22



Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a com-
pact metric space and ν is a Borel probability measure. Two mm-spaces are
isomorphic iff there exists isometry Φ : X → Y s.t. µX(Φ−1(B)) = µY (B) for
all measurable B ⊂ Y .
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Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact
metric space and ν is a Borel probability measure. Two mm-spaces are iso-
morphic iff there exists isometry Φ : X → Y s.t. µX(Φ−1(B)) = µY (B) for all
measurable B ⊂ Y .

The first option, proposed and analyzed by K.L Sturm [St06], reads

d(1)
GW,p(X, Y ) = inf

d∈D(dX ,dY )
inf

µ∈M(µX ,µY )

(
∑

x,y

dp(x, y)µx,y

)1/p
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Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact
metric space and ν is a Borel probability measure. Two mm-spaces are iso-
morphic iff there exists isometry Φ : X → Y s.t. µX(Φ−1(B)) = µY (B) for all
measurable B ⊂ Y .

The first option, proposed and analyzed by K.L Sturm [St06], reads

d(1)
GW,p(X, Y ) = inf

d∈D(dX ,dY )
inf

µ∈M(µX ,µY )

(
∑

x,y

dp(x, y)µx,y

)1/p

The second option reads [M07]

d(2)
GW,p(X, Y ) = inf

µ∈M(µX ,µY )




∑

x,y

∑

x′,y′

|dX(x, x′)− dY (y, y′)|pµx,yµx′,y′




1/p
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The first option,

d(1)
GW,p(X, Y ) = inf

d∈D(dX,dY )
inf

µ∈M(µX ,µY )

(
∑

x,y

dp(x, y)µx,y

)1/p

requires 2(nX × nY) variables and nX + nY plus ∼ nY · CnX
2 + nX · CnY

2

linear constraints. When p = 1 it yields a bilinear optimization problem.

Our second option,

d(2)
GW,p(X, Y ) = inf

µ∈M(µX ,µY )




∑

x,y

∑

x′,y′

|dX(x, x′)− dY (y, y′)|pµx,yµx′,y′




1/p

requires nX × nY variables and nX + nY linear constraints. It is a quadratic
(generally non-convex :-( ) optimization problem (with linear and bound con-
straints) for all p.

Then one would argue for using d(2)
GW,p.



Numerical Implementation

The numerical implementation of the second option leads to solving a QOP
with linear constraints:

minU
1
2UT ΓU

s.t. Uij ∈ [0, 1], UA = b

where U ∈ RnX×nY is the unrolled version of µ, Γ ∈ RnX×nY ×nX×nY is the un-
rolled version of ΓX,Y and A and b encode the linear constrains µ ∈M(µX , µY ).

This can be approached for example via gradient descent. The QOP is
non-convex in general!

Initialization is done via solving one of the several lower bounds (discussed
ahead). All these lower bounds lead to solving LOPs.

For details see [M07].
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1
1/2 1/2

1/3

1/3 1/3 1/4

1/4

1/4

1/4

{∆n}∞n=1

Can GW (1) be equal to GW (2)?

• Using the same proof as in the Kalton-Ostrovskii Thm., one can prove
that

d(1)
GW ,∞ = d(2)

GW ,∞.

• Also, it is obvious that for all p ≥ 1

d(1)
GW ,p ≥ d(2)

GW ,p.

• But the equality does not hold in general. One counterexample is as fol-
lows: take X = (∆n−1, ((dij = 1)), (νi = 1/n)) and Y = ({q}, ((0)), (1)).
Then, for p ∈ [1,∞)

d(1)
GW,p(X, Y ) =

1
2

>
1
2

(
n− 1

n

)1/p

= d(2)
GW ,p(X, Y )

• Furthermore, these two (tentative) distances are not equivalent!! This
forces us to analyze them separately. The delicate step is proving that
dist(X, Y ) = 0 implies X % Y .

• K. T. Sturm has analyzed GW (1).
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Properties of d(2)
GW ,p

1. Let X, Y and Z mm-spaces then

dGW,p(X, Y ) ≤ dGW,p(X, Z) + dGW ,p(Y, Z).

2. If dGW ,p(X, Y ) = 0 then X and Y are isomorphic.

3. Let Xn = {x1, . . . , xn} ⊂ X be a subset of the mm-space (X, d, ν).
Endow Xn with the metric d and a prob. measure νn, then

dGW,p(X, Xn) ≤ dW,p(ν, νn).
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The parameter p is not superfluous

The simplest lower bound one has is based on the triangle inequality plus

2 · d(2)
GW ,p(X, {q}) =

(∫

X×X
dX(x, x′) ν(dx)ν(dx′)

)1/p

:= diamp(X)

That is
d(2)
GW ,p(X, Y ) ≥ 1

2
|diamp(X)− diamp(Y )|

For example, when X = Sn (spheres with uniform measure and usual in-
trinsic metric):

• p =∞ gives diam∞(Sn) = π for all n ∈ N

• p = 1 gives diam1(Sn) = π/2 for all n ∈ N

• p = 2 gives diam2(S1) = π/
√

3 and diam2(S2) =
√

π2/2− 2



31

Upper and Lower bounds Let (X, d, ν) be an mm-space.

• Shape Distributions [Osada-et-al]: construct histogram of interpoint
distances, FX : R → [0, 1] given by

t "→ ν ⊗ ν ({(x, x′)| d(x, x′) ≤ t})

• Shape Contexts [SC]: at each x ∈ X, construct histogram of d(x, ·),
CX : X × R → [0, 1] given by

(x, t) "→ ν ({x′| d(x, x′) ≤ t})

• Hamza-Krim [HK]: at each x ∈ X compute mean distance to rest of
points, HX : X → R

x "→
(∫

X
dp(x, x′)ν(dx′)

)1/p

• Wasserstein under Euclidean isometries: consider X, Y ⊂ Rd and
compute

diso
W,p(X,Y ) = inf

T
dW,p(X, T (Y ))

• Gromov-Hausdorff distance [MS04],[MS05]
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Some Experiments

Some experimentation: ∼ 70 models in 7 classes. Classification using 1-nn:
Pe ∼ 2%. Hamza-Krim gave ∼ 15% on same db with all same parameters etc.
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Discussion

• Implementation is easy: Gradient descent or alternate opt.

• Solving lower bounds yields a seed for the gradient descent. These lower
bounds are compatible with the metric in the sense that a layered recog-
nition system is possible: given two shapes, (1) solve for a LB (this gives
you a µ), if value small enough, then (2) solve for GW using the µ as seed
for your favorite iterative algorithm.

• Easy extension to partial matching.

• Interest in relating GH/GW ideas to other methods in the literature. In-
terrelating methods is important also for applications: when confronted
with N methods, how do they compare to each other? which one is better
for the situation at hand?

• Latest developments:

– Partial matching [M08-partial].
– Euclidean case [M08-euclidean].
– Persistent Topology based methods (Frosini et al., Carlsson et al.)

• No difference between continuous and discrete. Probability measures take
care of the ’transition’.

http://math.stanford.edu/~memoli
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