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Goal

• Shape discrimination is a very important problem in several fields.

• Isometry invariant shape discrimination has been approached with dif-
ferent tools, mostly via computation and comparison of invariant signa-
tures, [HK03,Osada-02,Fro90,SC-00].

• The Gromov-Hausdorff distance (and certain variants) provides a rig-
orous and well motivated framework for studying shape matching under
invariances [MS04,MS05,M07,M08].

• However, its direct computation leads to NP hard problems (BQAP:
bottleneck quadratic assignment problems).
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• Most of the effort has gone into finding lower bounds for the GH distance
that use informative invariant signatures and lead to easier optimization
problems [M07,M08].

• Using persistent topology [ELZ00], we obtain a new family of sig-
natures and prove that they are stable w.r.t the GH distance: i.e., we
obtain lower bounds for the GH distance!

• These lower bounds:

– perform very well in practical application of shape discrimination.

– lead to BAPs (bottleneck assignment problems) which can be solved
in polynomial time.
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shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

• M: collection of all shapes (finite metric spaces).

• D: collection of all signatures (persistence diagrams).

Dh, h H
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then use Gromov-Hausdorff distance..



Choice of the metric: geodesic vs Euclidean
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Invariance to isometric deformations (change in pose)
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Invariance to isometric deformations (change in pose)

geodesic distance remains approximately constant
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Invariance to isometric deformations (change in pose)

geodesic distance remains approximately constant
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Definition [Correspondences]

For finite sets A and B, a subset C ⊂ A × B is a correspondence (between A
and B) if and and only if

• ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R

• ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R

Let C(A, B) denote all possible correspondences between sets A and B.
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Definition. [BBI] For finite metric spaces X, dX and Y, dY , define the
Gromov-Hausdorff distance between them by

dGH X,Y
1
2

min
C

max
x,y , x ,y C

dX x, x dY y, y
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Construction of our signatures

• Our signatures take the form of persistence diagrams: we capture cer-
tain topological and metric information from the shape.

• First example: construction based on Rips filtrations: Let X, dX be a
shape.

– Let Kd X be the d-dimensional full simplicial complex on X.

– To each σ x0, x1, . . . , xk Kd X assign its filtration time

F σ :
1
2

max
i,j

dX xi, xj

– This gives rise to a filtration Kd X , F .

– Apply persistence algorithm [ELZ00] to summarize topological
information in the filtration and obtain persistence diagram.
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• Persistence diagrams are colored multi-subsets of the extended real
plane.. can also be represented as barcodes.

• Let D denote the collection of all persistence diagrams. Compare two dif-
ferent persistence diagrams with bottleneck distance view D, dB
as a metric space.
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Example: Rips filtration on a torus
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Example: Rips filtration on a torus
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Our signatures: more richness

• Let’s assume that in there is also a function defined on the shape: X, dX , fX .
Then, we redefine the filtration values of σ x0, x1, . . . , xk

F σ max
1
2

max
i,j

dX xi, xj ,max
i

fX xi

• Again, this gives rise to a filtration: Kd X , F use persistence
algorithm to obtain a persistence diagram.

• This increases discrimination power!

• We denote by H a family of maps that attach a function to a given finite
metric space.

• Then, for each h H, we denote by Dh X the persistence diagram arising
from the filtration above. This constitutes our family projection onto D.
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Example (Eccentricity). To each finite metric space X, dX one can assign
the eccentricity function:

eccX x max
x X

dX x, x .
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Theorem (stability of our signatures). For all X, Y M,

dGH X, Y sup
h H

C h dB Dh X , Dh Y .

Remark.

• Proof relies on properties of the GH distance and new results on the sta-
bility of persistence diagrams [CCGGO09].

• For a given h, the computation leads to a BAP which can be solved in
polynomial time.

• There are adaptations one can do in practice to speed up, see paper.

• One can obtain more generality and discrimination power by working in
the class of mm-spaces: shapes are represented as triples X, dX , µX

where µX are weights assigned to each point see [M07] and paper.

• Our results include stability of Rips persistence diagrams.
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Some experiments

• Sumner database: 62 shapes total, 6 classes. Used graph estimate of the
geodesic distance. Number of vertices ranged from 7K to 30K.

• Subsampled shapes and retained subsets of 300 points (farthest point sam-
pling). Normalized distance matrices.

• Used the mm-space representation of shapes: weights were based on Voronoi
regions.

• Used several functions λ h for λ in a finite subset of scales.

• Obtained 4% (or 2%) classification error in a 1-nn classification problem.
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Discussion

• Summary of our proposal:

– Use the metric (or mm-space) representation of shapes.
– Formulate the shape matching problem using the Gromov-Hausdorff

distance.
– Compute our signatures for shapes.
– Solve the BAP lower bounds: computationally easy! By our theorem,

the computed quantities give lower bounds for the GH distance.

• Implications and Future directions:

– We do not need a mesh– general: can be applied to any dataset.
– We obtain stability of Rips persistence diagrams.
– Richness of the family H? how close can I get to the GH distance?
– Local signatures: more discrimination.
– Extension to partial shape matching: which (local) signatures are

useful for this?
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Let X1, X2 Z be two different samples of the same shape Z, and Y another
shape then

dGH X1, Y dGH X2, Y dGH X1, X2 r1 r2


