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Persistent Homology pipeline

F D
X, FX

Y, FY

D FX

D FYY

X

F

M Dk

• M: all finite metric spaces pX, dXq. Metrized with dGH.

• F : all finite filtered spaces pX,FXq, FX : powpXq Ñ R is a filtration.

• D: all persistence diagrams. Metrized with bottlenck distance dD.

• F :MÑ F is a filtration functor. Think Rips, FR.

• Dk: rank k Persistence Homology ’functor’.

Write
DR
k :“ Dk ˝ FR :MÑ D.
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Motivation

In many applications one has huge datasets, say pX, dXq with #X » 106.

Computing DRips
k pXq is not feasible.

For instance, jPlex will struggle with #X “ 500.

An idea that has been implicitly/explicitly used is bootstrapping/resampling : Fix
n (say 100) and compute

DR
k

`
Ψ
pnq
X px1, x2, . . . , xnq

˘

for many many choices (say N “ 20, 000) of x1, x2, . . . , xn. Then compute
barycenter of all those [MMH11].

This is much cheaper than attempting the computation of DR
k pXq at once. For

instance, we were forced to use this in a data intensive neuroscience application
[SMI`08].

These considerations lead to studying the object:

KR
n,kpXq :“  

DR
k pMq, M P KnpXq

( Ă D.

(Curvature sets over persistence diagrams)
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Curvature sets

Let pX, dXq compact metric space be given (the underlying dataset). Sample
n-tuples from X and give them restriction metric:

Ψ
pnq
X : X ˆ ¨ ¨ ¨ ˆX Ñ Rnˆn`

px1, . . . , xnq ÞÑ ppdXpxi, xjqqqni,j“1.

Define the n-th curvature set of X as

KnpXq :“  
Ψ
pnq
X px1, . . . , xnq, px1, . . . , xnq P Xˆn

( Ă Rnˆn` .

Think of this as the n-point configuration space of X. Contains all the building
blocks of geometric simplicial complexes one can build from X.



Curvature sets over
Persistence Diagrams

Facundo Mémoli

Persistent Homology
pipeline

The construction

Curvature sets over
persistence diagrams

Probability measures over
D

Discussion

*

p. 6

Curvature sets and a distance on M

Note that no matter what X, KnpXq always lives as a subset of Rnˆn` .

It is therefore suggestive to try to compare X and Y by means of their respective
curvature sets:

pdGH pX,Y q :“ 1

2
sup
nPN

dH
`
KnpXq,KnpY q

˘
.

Is this a good definition (modified GH distance)?

Let’s see some more details about curvature sets.

For example,

K2pXq “
!´

0 dXpx,x
1
q

dXpx,x
1
q 0

¯
, x, x1 P X

)
.
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Curvature sets

K3pXq “
$
&
%

ˆ
0 α β
α 0 γ
β γ 0

˙
,
α “ dXpx1, x2q,
β “ dXpx2, x3q,
γ “ dXpx3, x1q,

x1, x2, x3 P X
,
.
- .

Example 2.1 (K3pS1q). Consider S1 with angular metric. There are two
possibilities for three points on S1. On the left figure: γ “ α` β, and on the
right figure: α` β ` γ “ 2π.

α

β

α

β

α

β

γ

Total is 4 cases each given by a linear relation ñ surface of tetrahedron with
vertices p0, 0, 0q and πp1, 1, 0q, πp1, 0, 1q, πp0, 1, 1q.
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Curvature sets are functorial

Kn :M ÝÑ BorelpRnˆn` q is functorial:

KnpXq Ď KnpY q whenever X ãÑ Y isometrically.

Consequence (all scaled down versions of S1 can be iso-embedded into S2):

K3pS2q “ ConvexHullpK3pS1qq ñ full tetrahedron.

Then,

pdGH
`
S1,S2

˘ ě 1

2
dH

`
K3pS1q,K3pS2q

˘ “ 1

2
}π

2
p1, 1, 1q ´ 2π

3
p1, 1, 1q}8 “ π

12
.
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Modified Gromov-Hausdorff distance

Theorem 2.1 ([Mém12]). The following properties hold:

• pdGH is a legitimate distance onM modulo isometries.

• pdGH is topologically equivalent to dGH on GH-precompact families.

• pdGH ď dGH (and equality fails sometimes).

Last property means that by looking at curvature sets we’ve proved that
dGHpS1,S2q ě π

12 . It is typically difficult to find good lower bounds for GH
between very symmetric spaces.
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Why the name “curvature sets”?

Consider smooth plane curve C:

R

p

x

x

a

b

c

C

Then,
´

0 a b
a 0 c
b c 0

¯
P K3pCq, so from Heron’s formula we can compute

R´1 “ 4 Spa, b, cq
a b c

.

By a Taylor expansion R´1 » κppq, the curvature at p, as x, x1 and p coalesce.
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Example: KR
4,1pXq

KR
4,1pXq :“  

DR
1 pMq, M P K4pXq

(
.

Rips D1p¨q of a space with 4 points can have at most one point. So I can take
all D P KR

4,1pXq and plot them all in the same axis!
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Example – cont’d

Consider n “ 4 and k “ 1 for S1, S2 and T2 (angular metric for all, and for
Torus `2 mix). Computational example: sampled about 5ˆ 105 4-tuples out of
each geometry. Color is persistence of each point.
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Functoriality: X ãÑ Y isometrically implies KR
n,kpXq Ď KR

n,kpY q.
In this case, S1 ãÑ S2 and S1 ãÑ T2. One can find the sub-diagram corresponding
to S1 as a subset of the other two.
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Curvature sets over PDs are well behaved

Recall that for any metric space X, KR
n,kpXq Ă D. Thus, since D is a metric

space (with the bottlenck distance), we can induce a Hausdorff distance on its
subsets, dDH.

Theorem 3.1 (M-13). For all X,Y compact metric spaces, and k, n P N,
n ě 1 it holds that:

dDH
`
KR
n,kpXq,KR

n,kpY q
˘ ď 2 pdGH pX,Y q .
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Remarks

• KR
n,kpXq are stable invariants of a metric space/dataset.

• They are potentially as interesting as DR
k pXq.

• In many applications one is trying to discriminate datasets. Computing the
lower bound to GH distance given by the theorem is very cheap. This is
in sharp contrast with invoking standard stability of DR

k to deduce a lower
bound for GH distance.

• CSoPDs are combinatorial/set theoretic objects. They do not carry infor-
mation that would allow me to answer the question: ’what is the most
likely D P KR

n,kpXq’?

• For that it is more natural to explore the idea of representing data as metric
measure spaces ñ induce probability measures over KR

n,kpXq.
• Understand probability measures over D ñ model datasets as metric mea-

sure spaces.
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Gromov-Wasserstein distance

Let Mw denote all compact mm-spaces: pX, dX , µXq where µX is a Borel
probability measures on X.

Isomorphism: X
iso“ Y if exists ψ : X Ñ Y isometry such that ψ#µX “ µY .

Given pX, dX , µXq and pY, dY , µY q in Mw let µ P PpX ˆ Y q be such that
pπ1q#µ “ µX and pπ2q#µ “ µY . Any such µ is called a coupling. Define for
each p ě 1

dGW,ppX,Y q :“ 1

2
inf
µ
}dX ´ dY }Lppµbµq.

Theorem 4.1 ([Mém11]). dGW,p is a legitimate distance onMwziso.
Example 4.1. The one-point metric measure space is pt˚u, pp0qq, δ˚q. Then,

dGW,ppX, ˚q “ 1

2

ˆĳ `
dXpx, x1q

˘p
µXpdxqµXpdx1q

˙1{p

“:
1

2
diamp pXq .

This induces notion of convergence of a sequence tZnu Ă Mw to a point.
Concentration of measure:

Zn
nÝÑ ˚ ô diamp pZnq Ñ 0 as n Ò 8.
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Properties of pMw, dGW ,pq

The space has been studied in [Mém11] and then by Sturm who in 2013 proved
that

• pMw, dGW,pq is a geodesic space, and

• for p “ 2 it is an Alexandrov space of curvature ě 0.
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Probability measures on KR
n,kpXq

Pick any pX, dX , µXq PMw.

Consider the map DR
k ˝Ψ

pnq
X : X ˆ ¨ ¨ ¨ ˆXloooooomoooooon

n times

ÝÑ D.

Then, consider product measure µbnX and push it forward via the map above and
obtain a probability measure:

U
pn,kq
X :“ `

DR
k ˝Ψ

pnq
X

˘
#
µbnX P PpDq.

Clearly, KR
n,kpXq “ supp

”
U
pn,kq
X

ı
.

Now, given two metric measure spaces X ÞÑ U
pn,kq
X and Y ÞÑ U

pn,kq
Y are both

elements of PpDq.
The bottleneck distance on D induces a Wasserstein distance on PpDq, dDW,p.

Theorem 4.2 (M-13).

dDW,ppU pn,kqX , U
pn,kq
Y q ď cpn, k, pq ¨ dGW,ppX,Y q.

Cf. with Gromov-Prokhorov results by Blumberg et. al.
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Concentration of measure

For each n P N one can view KR
n,kpXq as an mm-space, then obtain sequence

"`
KR
n,kpXq, dD, U pn,kqX

˘*

nPN
ĂMw.

Does this sequence concentrate?

We can study whether limn diamp

´
KR
n,kpXq

¯
“ 0.

As a consequence of mm-space covering theorem of [CM10] we obtain:

Theorem 4.3 (M-13).

dGW,ppKR
n,kpXq, ˚q nÝÑ 0

(Interpretation: convergence to barycenter.)

Cf. Related results using Gromov-Prokhorov distance by Blumberg et. al.
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Coordinates on D

F D
X, FX

Y, FY

D FX

D FYY

X

F

M Dk

Rd

ξd

ξd
`
DpFXq˘

ξd
`
DpFY q˘

ξd : D Ñ Rd is a coordinatization map such that each coordinate is 1-Lipschitz.

Corollary 4.1. For mm-spaces X and Y , and a 1-Lipschitz map ξ : D Ñ R:
ż 8

0

ˇ̌
ˇP pn,kqX,ξ ptq ´ P pn,kqY,ξ ptq

ˇ̌
ˇ dt ď cpn, k, pq ¨ dGW,ppX,Y q,

where P
pn,kq
X,ξ ptq :“ U

pn,kq
X

´ 
D s.t. ξpDq ď t, D P KR

n,kpXq
(¯

etc.
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Discussion

• Experimentation: discrimination of shapes using KR
n,kpXq.

• Precise (asymptotic) characterization of U
pn,kq
X for S1, S2, T2?

• Structural properties of KR
n,kpXq, or U

pn,kq
X ?

• preprint should be posted on Arxiv soon.
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