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Clustering

e Clustering plays a central role in Data Analysis. It can give useful infor-
mation about the structure of the data.

e Not much known about theoretical properties of clustering methods. Which
methods are stable?

e In practice, when dealing with large datasets, one is forced to subsample
the data: clustering the whole dataset is infeasible. How do the answers
based on two different subsamples compare? Can I guarantee that we
obtain similar answers when these subsamples are similar 7

e ['ll describe work we’ve done in the last 3 years [CMO08,CMO09-um,CM-
TFCS-09].
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Standard Clustering

In this context, given a finite metric space (X, d), a clustering method f returns

a partition of X:
f(X,d) € P(X).

Hierarchical Clustering

Given a finite metric space (X, d), a clustering method f returns a nested family
of partitions, or dendrogram (a.k.a. persistent set) of X:

f(X,d) € D(X)
where D(X) = {(X,0)|6:[0,00) — P(X)} s.t.

1. 8(0) ={{z1},...,{zn}}

2. There exists tg s.t. 0(t) is the single block partition for all t > .
3. If r < s then 0(r) refines 0(s).

4. For all r there exists € > 0 s.t. 6(r) =0(t) for t € [r,r + €.
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0(3) =1{{7},{4,6,5,2,3,1},{8,9,10}}




Standard Clustering: desirable properties
f(X,d)=T € P(X).

e Scale Invariance: For all « > 0, f(X,a-d) =T.

e Richness: Fix finite set X. Require that for all I' € P(X), there exists
dr, metric on X s.t. f(X,dp) =T.

e Consistency: Let I' = {B;,...,By}. Let d be any metric on X s.t.
1. for all 7,2’ € B, d(z,2') < d(z,z') and

2. forall x € By, ¢’ € By, a # o', d(x,x") > d(x, x").

AN

Then, f(X,d) =T.
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Kleinberg’s Theorem: bad news

Theorem 1. There is no standard clustering algorithm satisfying scale invari-
ance, richness and consistency.
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Kleinberg’s Theorem: bad news

Theorem 1. There is no standard clustering algorithm satisfying scale invari-
ance, richness and consistency.

Comments

e This is one more reason why one may feel that it is more sensible to look
at hierarchical clustering.

e Sometimes datasets have multiscale structure, so standard clustering may
not be applicable.

e S0 we now concentrate on hierarchical clustering methods. We wil prove
a theorem in the spirit of Kleinberg’s but instead of non-existence, we’ll
obtain uniqueness.
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Hierarchical Clustering

We deal with agglomerative HC. For a finite metric space (X, d), its separation
1S

sep(X,d) = 3151;13 d(xz,x").

e The idea is to start with the partition of X into singletons and then begin
agglomerating blocks according to some rule.

e Well known methods/rules are those given by single, average and com-
plete linkage.

e Continue agglomerating until you are left with one single block.

e Record the values of the linkage parameter for which there are mergings
and obtain a hierarchical decomposition of X, i.e. a dendrogram over X.
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From Dendrograms to Ultrametrics
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HC methods: reformulation in terms of ultrametrics

e An ultrametric v on a set X is a function u : X x X —» RT s.t.

— u(x,2’) = 0 if and only if x = 2'.
— u(x,2") = u(z’, x).

— max(u(x,2’),uw(x’,2")) = u(x,2”) for all x,z’', 2" € X.

e Let U(X) denote the collection of all ultrametrics on the set X.
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HC methods: reformulation in terms of ultrametrics

e An ultrametric v on a set X is a function u : X x X —» RT s.t.

— u(x,2’) = 0 if and only if x = 2'.
— u(x,2") = u(z’, x).

— max(u(x,2’),uw(x’,2")) = u(x,2”) for all x,z’', 2" € X.
e Let U(X) denote the collection of all ultrametrics on the set X.

e [t turns out that ultrametrics and dendrograms are equivalent.

Theorem. For any given finite set X, there exists a bijection
U :D(X)— U(X) such that

r,7' € Bel(t) = V(0)(x,x') <t
for all dendrograms 6.
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Hierarchical clustering: formulation
We represent dendrograms (= rooted trees) as ultrametric spaces: (X, u) is an
ultrametric space if and only if for all z,2’, 2" € X,

max(u(x,z'),u(z’, 2")) > u(x,z").

Let X = U,,>1 &), denote set of all finite metric spaces and U = L,,>1U, all finite
ultrametric spaces. Then, a hierarchical clustering method can be regarded as
a map

T: X —U
s.t. X, 2 (X,d) — (X,u) € U,.

12
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Hierarchical clustering: formulation
We represent dendrograms (= rooted trees) as ultrametric spaces: (X, u) is an
ultrametric space if and only if for all z,2’, 2" € X,

max(u(x,z'),u(z’, 2")) > u(x,z").

Let X = U,,>1 &), denote set of all finite metric spaces and U = L,,>1U, all finite
ultrametric spaces. Then, a hierarchical clustering method can be regarded as
a map

T: X —U
s.t. X, 2 (X,d) — (X,u) € U,.

Remark. The interpretation is that w(x,x’) measures the effort or cost of
merging x and x' into the same cluster.

12
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Example: measuring distance between dendrograms

One of the consequences of the flexibility offered by the ultrametric representa-
tion of dendrograms is that one can now define some useful notions of distance
between dendrgrams. Consider for example the case when o and 3 are two
dendrograms over a given set X. Then, the condition that

U(a)(z,2") — ¥(B)(z,2")| <

Imax
x,x’

translates into the fact that the points at which x and =’ merge are within 7 of
eachother. A

S I
.......... I, max ‘Ti — T;‘ < 7]
| USSR | SSSS | Res ol ¢

|3
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Canonical construction

SL. HC can be proved to be equivalent to the maximal subdominant ultra-
metric: 7" : X — U given by T*(X,d) = (X, u*) where

/ .
u (z,2") :=min< max d(z;,T;11); T =20, X1,..., Ty =21 p.
0<:<n—1

O
OO

| 4

Friday, December 11, 2009



Canonical construction

SL. HC can be proved to be equivalent to the maximal subdominant ultra-
metric: 7" : X — U given by T*(X,d) = (X, u*) where

u (z,2") :=min< max d(z;,T;11); T =20, X1,..., Ty =21 p.
0<:<n—1

O
OO

O

Indeed, one can prove that

Proposition. Let (X, d) be any finite metric space and write T*(X,d) = (X, u").
Then, the dendrogram ¥~ (u*) is equal to the one produced by SL HC applied
to (X,d).

| 4
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A characterization theorem for SL, [CMO08]|, [CMO09-um]

Theorem 1. Let I be a clustering method s.t.

1. T({p,q}, (95)) = {p,a}, (§3)) for all 6 > 0.
2. Forall X, Y e X and ¢ : X — Y s.t. dx(z,x') > dy(¢(x), p(x)),

ux (z,2") > uy (¢(z), d(z"))
for all x,x" € X, where T(X,dx) = (X,ux) and T(Y,dy) = (Y, uy).
3. For all (X,d) € X,
w(x,x') > sep(X,d) for allx A2 € X
where T'(X,d) = (X, u).
Then T'="1T%.

|5
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& of the theorem

%

Condition 1

for all 0 > 0
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Standard Clustering: desirable properties
f(X,d)=T € P(X).

e Scale Invariance: For all a > 0, f(X,a-d) =T.

e Richness: Fix finite set X. Require that for all I' € P(X), there exists
dr, metric on X s.t. f(X,dp)=T.

e Consistency: Let I' = {B;,...,By}. Let d be any metric on X s.t.

1. for all z,2" € B,, C/Z\(CIT,SE/) < d(xz,x") and

AN

2. for all x € By, ' € By, a # ', d(x,z’) > d(x, x").

AN

Then, f(X,d) =T.

|7
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Condition 11

Let X,)YeXand ¢: X - Y s.t. dx(x,2') = dy(¢d(x),d(z’)) for all z, 2" € X.
Then

\%

ux (z,2") = uy (d(x), p(x)) for all z,2" € X.

This means roughly that decreasing the distances has the effect of reducing
the cost of merging points.

Cf. Kleinberg’s consistency property.

(X,dx) — (X, ux) (1)

|

(Y, dy) —— (Y, uy)

(this would be called functoriality)

|18
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Condition 11

Let X, YeX and ¢: X - Y s.t. [CZX r,x') = dy(p(x), p(x")) for all z,x" € X]
Then

ux (z,2") = uy (d(x), p(x)) for all z,2" € X.

This means roughly that decreasing the distances has the effect of reducing
the cost of merging points.

Cf. Kleinberg’s consistency property.

(X,dx) — (X, ux) (1)

|

(Y, dy) —— (Y, uy)

(this would be called functoriality)
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Condition 11

Let X,)YeXand ¢: X - Y s.t. dx(x,2') = dy(¢d(x),d(z’)) for all z, 2" € X.
Then

V

[UX(ZIZ,ZL‘/) > uy (¢(x), p(z")) for all x, 2’ € X]

This means roughly that decreasing the distances has the effect of reducing
the cost of merging points.

Cf. Kleinberg’s consistency property.

(X,dx) — (X, ux) (1)

|

(Y, dy) —— (Y, uy)

(this would be called functoriality)
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Condition 11

Let X,)YeXand ¢: X - Y s.t. dx(x,2') = dy(¢d(x),d(z’)) for all z, 2" € X.
Then

\%

ux (z,2") = uy (d(x), p(x)) for all z,2" € X.

This means roughly that decreasing the distances has the effect of reducing
the cost of merging points.

Cf. Kleinberg’s consistency property.

(X, dx)|— (X, ux) (1)

T

(Y, dy) — (Y, uy)
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Condition 11

Let X,)YeXand ¢: X - Y s.t. dx(x,2') = dy(¢d(x),d(z’)) for all z, 2" € X.
Then

\%

ux (z,2") = uy (d(x), p(x)) for all z,2" € X.

This means roughly that decreasing the distances has the effect of reducing
the cost of merging points.

Cf. Kleinberg’s consistency property.

(X,dx) — (X, ux) (1)

| L

(Y, dy ) ——t (Y, uy)

(this would be called functoriality)
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Condition 11

Let X, YeXand ¢: X - Y s.t. dx(x,2") = dy(¢d(x), p(2")) for all x,2" € X.
Then

V

ux (z,2') = uy (d(x), ¢(x)) for all z,2" € X.

This means roughly that decreasing (not reducing) the distances has the
effect of reducing (not increasing) the cost of merging points.

Condition II11
w(x, ') = sep(X,d) for all z,2' € X.

This means roughly that the cost of merging to points has to be at least the
separation of the space.

19
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10

sep(X, d)
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A characterization theorem for SL, [CMO08], [CM09-um)]

Theorem 1. Let I be a clustering method s.t.

1. T({p,q}, (95)) = {p,a}, (§3)) for all 6 > 0.
2. Forall X, Y e X and ¢ : X — Y s.t. dx(z,x') > dy(¢(x), p(x)),

ux (z,2") > uy (¢(z), d(z"))
for all x,x" € X, where T(X,dx) = (X,ux) and T(Y,dy) = (Y, uy).
3. For all (X,d) € X,
w(x,x') > sep(X,d) for allx A2 € X
where T'(X,d) = (X, u).
Then T'="1T%.

21
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Two other aspects of our work

o Convergence

22
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Stability properties of HC methods

e CL and AL are not stable!!

e SL is stable.

1 1 1 1+
O O O O o—@
A B C A B C
A A
B B
C C
1 1 2+ ¢

23
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Stability of SL HC, [CMO08], [CM09-um)]

Proposition 1. For any finite metric spaces (X,dx) and (Y, dy)

dQH((Xv dX)7 (Yv dY)) > dQH(T* (Xv dX)v T (Yv dY))'

Moral: metrically similar subsets of my data will yield similar clustering re-
sults, when the clustering method is SL.

24
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Stability of SL HC, [CMO08], [CM09-um)]

Proposition 1. For any finite metric spaces (X,dx) and (Y, dy)

dQH((Xv dX)a (Yv dY)) > dQH(T* (Xa dX)v T (Yv dY))'

Moral: metrically similar subsets of my data will yield similar clustering re-
sults, when the clustering method is SL.

Consequence: Convergence

24
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The Gromov-Hausdorff distance

e It is well studied and well understood notion of distance between metric
spaces.

e It is insensitive to relabelling (actually to isometries)

e We view dendrogram as (ultra) metric spaces = we can use the GH dis-
tance to compare dendrograms.

e Roughly the definition is the following: dg (X , Y) < 7 it and only if there
exist maps f: X —» Y and g : Y — X with the property that

dx (@,2") = dy (f(z), f(z)| <7 for all z,2" € X

and
dy (y,y") —dx(g(y),9(y"))| <nforaly,y eY.

25
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The Gromov-Hausdorff distance: dendrograms

In terms of dendrograms,
dgr (P (0x), ¥ (0y)) <n
means that there exist f and g s.t.

e two points z, x’ fall in the same same block of fx (¢) implies that f(z) and
f(2’) fall in the same block of 8y (t') for some t' € [t — n,t + n].

e two points y,y’ fall in the same same block of Ay (¢) implies that g(y) and
g(y’) fall in the same block of Ox(t') for some t’ € [t —n,t + n].

26
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Another aspect of our work: convergence

Say you are given finitely many random i.i.d. samples X,, = {x1,22,...,2,}
from a metric space (Z,dyz), where each z; is distributed according to a prob-
ability measure u compactly supported on Z. Then, compute 6x_ the SL
dendrogram of X,,.

The question is: what does 0x, converge to (if at all)?
We answer this question in our work and generalize a classical result b

Hartigan regarding the properties of SL. Namely, we prove that

P (lim0y, =0,) =1

n

for some dendrogram 6, that captures the multiscale structure of supp [u].

27
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Discussion

e SLL HC is stable and enjoys all nice properties but it is derided by practi-
cioners because of its insensitivity to density: chaining effect.

e AL, CL do exhibit sensitivity to density, yet they are theoretically unsound

— The standard version: because it is not well behaved under permu-
tations.
— The "fixed” version: because it is unstable!

e As a solution we propose to look at two-parameter clustering: look at
certain two-dimensional analogues of dendrograms [CM-IFCS-09].

e Another line of work: study different trade-offs in the properties required
from standard clustering.

e The underlying concepts in our work are functoriality and metric ge-
ometry.

28
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