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1 Introduction

Recently the optimal transport techniques have raised great attention in the field of machine
learning and data analysis. This idea is used in the problem of domain adaption and generative
modeling.

The Kantorovich’s formulation [1] of this problem is given by:

WcpP,Qq :“ inf
ΓPPpX„P,Y„Qq

EpX,Y q„ΓrcpX,Y qs, (1)

where cpx, yq : X ˆ X Ñ R` is any measurable cost function and PpX „ P, Y „ Qq is a set
of all joint distribution of X,Y with marginals P and Q respectively. An element in the set
PpX „ P, Y „ Qq is also called a coupling. When we choose pX , dq as a metric space and
cpx, yq “ dppx, yq for p ě 1, the distance Wp is called the p-Wasserstein distance.

The Kantorovich-Rubinstein theorem gives a duality for the 1-Wasserstein distance, which
holds under mild assumptions on P and Q:

W1pP,Qq :“ sup
fPFL

| EX„P rfpXqs ´ EY„QrfpY qs |, (2)

where F is the class of all bounded 1-Lipschitz functions on the matric space pX, dq.
This work [2] is to study the problem of constructing what are called latent variable model

PG to mimic the true but unknown data distribution PX . Previously, there are two main ideas.
One is called autoencoder, which is based on latent encoding and decoding functions. The other
one is called adversarial generative network which does not rely on an explicit encoding function.
It optimizes an objective function which is an lower bound of JS-divergence. A later varient
version called wasserstein generative adversial network [3] applies the idea of optimal transport
to measuring the divergence of the generative model distribution and the underlying data dis-
tribution and use it as a more efficient objective w.r.t. the convergence of the optimization
algorithm.

This work tried to show an explicit connection between these two ideas. They proposed an
idea to factorize the coupling between the generative distribution and the data distribution by
the encoding function which satisfies some good probability. They also proposed a relaxed ver-
sion with some convex penalty function to make their objective of the problem computationally
tractable. Later in their paper, they also discussed some connection between their objective
function and other previous works.
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2 Background

The motivation of this work is the following problem, given a sampling from an unknown
distribution, how can we find a reasonable generative model whose sampling has the similar
distribution as the unknown distribution. Since it is quite hard to build a good generative
model w.r.t maximal likelihood estimation in high dimensional space, one way to do that is
to find some latent function, called generator, to generate some lower dimensional distribution
which we understand it better and can be sampled easily. First we introduction some notation:

• sets: calligraphic letters, X

• random variable: capital letters, X

• random variable values: lower case letters, x

• probability distributions: capital letters functions, P pXq or PX

• lower case letters functions, ppxq

The problem is like the following:
From a code in a (latent) lower dimensional space Z „ PZ for some fixed distribution PZ

which we know how to sample efficiently, we want to find a generator G : Z Ñ X which is
good in the sense of that the induced distribution PG of the image GpZq in the space of the
original dataset X is closed to the underlying but unknown distribution PX , w.r.t. some distance
function.

For the original generative adversarial network (GAN) [4], the distance function is:

DGAN pPX , PGq “ sup
TPT

EX„PX
rlog T pXqs ` EZ„PZ

rlogp1´ T pGpZqqqs (3)

where T is a collection of non-parametric choice functions.
A recent variation of called Wasserstein GAN(WGAN) [3] choose the distance function

as:
DWGAN pPX , PGq “ sup

TPW
mathdsEX„PX

rT pXqs ´ EZ„PZ
rT pGpZqqs (4)

3 Penalized OT

To build the connection between OT problem in generative model and the encoding function in
AE problem, the author proposed a technique to factorize couplings. The intuition is like the
following. For some coupling γ P PpX „ PX , y „ PGq, it can be factorized as the following:

γpx, yq “

ż

Z
pGpy|zqqpz|xqpXpxqdz, (5)

conditional distribution QpZ|Xq satisfies qZpzq :“
ş

X qpz|xqpXpxqdx “ pZpzq for all z P Z. This
means that the the latent coding space Z is fully determined by the data distribution PZ . Then,
it is argued in the paper that a part of the search space (couplings set) of the OT problem can
be reduced into a smaller space with respect to the probabilistic encoders QpZ|Xq.

The formal statement is the following theorem:
Theorem If PGpY |Z “ zq “ δGpzq@z P Z, where G : Z Ñ X , we have:

WcpPX , PGq “W :
c “ inf

PPPpX„PX ,Z„PZq
EpX,Y q„P rcpX,GpZqqs “ inf

Q:QZ“PZ

EPX
EQpZ|XqrcpX,GpZqqs

(6)
where QZ is the marginal distribution of Z when X „ PX and Z „ QpZ|Xq.
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The Dirac measure condition makes sure that we have a well-defined determinstic generator
G : Z Ñ X , the resulting model PG is just the push-forward distribution of PZ through generator
function G.

The condition on the r.h.s of the above equation is a bit restrict since intuitively, it says
that the encoding probability QpZ|Xq should be good enough w.r.t. the induced marginal
distribution QZpzq “

ş

X Qpz|xqP pxqdx coincides with the marginal (prior) distribution PZ .
This is not a simple problem to solve. So the author proposed a relaxation for this problem. The
idea is quite classical. Replace the strong constrain PZ “ QZ with some panelty F : Q Ñ R`,
such that F pQq “ 0 iff PZ “ QZ , and for any λ ą 0, construct the following relaxed version of
W :
c pPX , PGq :

W λ
c pPX , PGq :“ inf

QpZ|Xq
EPX

EQpZ|XqrcpX,GpZqqs ` λF pQq (7)

There are a lot of choices of convex penalty functions F . The author argued that some of
them like DJS , DKL or other f -divergence family can result in intractable F . So they choose
adversarial approximation DGAN pQZ , PZq, which becomes tight in the nonparametric limit.
This give the object function which they called penalized optimal transport(POT):

DPOT pPX , PGq :“ inf
QpZ|XqPQ

EPX
EQpZ|XqrcpX,GpZqqs ` λDGAN pQZ , PZq (8)

where Q is any nonparametric set of conditional distributions.
With a differential cost function c, this problem can be solved with SGD algorithm similarly

to AAE, by iteratively updating Q and G and adversarial discriminator of DGAN . Later,
the author also shew that DAEE can be viewed as a special case when choosing the squared
Euclidean as the cost c and the PGpY |Zq being the Gaussian.

When the cost function is chosen to be cpx, yq “ ||x´y||2 and PGpY |Zq “ N pY ;GpZq, δ2 ¨Iq,
the authors compared their objective with objectives in other previous models, VAE, AVB, AAE.

3.1 relations to VAE, AVB

Variational autoencoder (VAE) [5] is a method of generative modeling with the following ob-
jective

DV AEpPX , PGq “ inf
QpZ|XqPQ

EPX
rDKLpQpZ|Xq, PZq ´ EQpZ|Xqrlog pGpX|Zqss. (9)

w.r.t. generator(decoder) mapping PGpX|Zq. If the set Q is rich enough to contain all condi-
tional probability distribution QpZ|Xq, the objective DV AE concides with the negative marginal
log-likelihood DV AEpPX , PGq “ ´EPX

rlogPGpXqs. In practice, Q is a class of Gaussian dis-
tributions. So the optimal solution minize an upper bound on the negative log-likelihood or,
equivalently, on the KL-divergence DKLpPX , PGq.

To decrease the gap, Adversarial variational Bayes (AVB) [6] is proposed to improve it
by enlarging the class Q. The idea is similar to what we have mentioned in the first chapter,
instead of parameterize the conditional distribution directly, we can parameterize transformation
functions e : XˆRÑ Z. A random variable epx, εq implicitely defines a conditional distribution
QepZ|X “ xq. Instead of only a collection of Gaussian distributions, AVB allows Q to be
a collection of all distributions induced by these transformation functions which should be
differential. Also, it replaces the intractable term DKLpQepZ|Xq, PZq by Df,GAN pQepZ|Xq, PZq,
which results the following objective:

DAV BpPX , PGq “ inf
QepZ|XqPQ

EPX
rDf,GAN pQepZ|Xq, PZq ´ EQpZ|Xqrlog pGpX|Zqss. (10)

Compared with VAE and AVB, they proposed the following proposition:
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Proposition Let X “ Rd and assume cpx, yq “ ||x ´ y||2, PGpY |Zq “ N pY ;GpZq, δ2 ¨ Iq
with any function G : X Ñ R. If δ2 ą 0, then the function G˚δ and G: minimizing WcpPX , P

δ
Gq

and W :
c pPX , P

δ
Gq respectively are different: G˚δ depends on δ2, while G: does not. The function

G: is also a minimizer of WcpPX , P
0
Gq.

They argued that this is an adventage of their method since first it gets rid of an parameter,
and second, more importantly, it means their algorithm is stable w.r.t any δ ą 0, and third,
when δ “ 0, the optimal G: actually is an minimizer of WcpPX , P

0
Gq.

3.2 Relation to AAE

Adversarial auto-encoders (AAE) is also a quite nice generative model first raised in the work [6].
It reported good empirical results from this model on generative problem.

The objective AAE is defined as the following.:

DAAEpPX , PGq “ inf
QpZ|XqPQ

DGAN pQZ , PZq ´ EPX
EQpZ|Xqrlog pGpX|Zqs, (11)

where QZ is the marginal distribution of Z which is induced by PX and QpZ|Xq, which is also
called aggregated posterior [6]. One way to understand the AAE objective is that it replaces
the DKL term in equation 9 with another regularizer DGAN pQZ , PZq. The author argued that,
similarly to AVB, there is no clear link to log-likelihood since they shew that DAAE ď DAV B.
So another way to understand the effectiveness of AAE is to utilize their DPOT method. Since
it is easy to see that DAAE is a special case of DPOT with the cost function cpX,GpZqq chosen
to be log pGpx|zq. By their analysis, they suggested that AAE is infact attempting to minize
2-Wasserstein distance between PX and P δB.

4 Conclusion

This paper propose a divergence function called penalized optimal transport objective DPOT .
The connection between the adversarial generative model and the autoencoder was further
studied. The author proposed a way to factorize the coupling with a good choice encoding
probability when the generative probability is a deterministic, Dirac measure. It is also studied
in this paper that the connection of the objective function in AAE and the DPOT they proposed.
They argued that their POT objective can be viewed as a generalization of AAE. This also
justifies the effectiveness of the AAE model in a theorical level. So it will also be intereting to
see if some other variance of DPOT can be useful besides AAE.
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