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Abstract

This is the work of Fernando de Goes, David Cohen-Steiner, Pierre Alliez and Mathieu
Desbrun. Given a point set S with Dirac masses, they provide an algorithm for constructing
a coarse simplicial complex T , such that the measure on S is well approximated by a linear
combination of uniform measures on the edges and vertices of T .

1 Introduction

Shape reconstruction from some input pointset is a problem encountered in many areas such
as face recognition, biology, image processing et cetera. In this paper [7], shape reconstruction
and simplification is seen as an optimal transport problem between measures. In particular,
the input points are considered as Dirac masses, and the output is a 1-dimensional simplicial
complex seen as the support of a piecewise uniform measure. The use of optimal transport allows
robustness to large amounts of noise and outliers, and preserves boundaries and sharp features.
The methods available prior to this work could handle presence of noise [2] [3], outliers [4] [5],
features and boundaries individually, but none of them could handle all of these concurrently.

2 Preliminaries

We provide some definitions that are used in the rest of the document.

Definition (Delaunay Triangulation). A Delaunay triangulation for a finite set of points P on
a plane is a triangulation DT pP q such that no point in P lies inside the circumcircle of any
triangle in DT pP q. For a point set P with |P | “ n, such a triangulation can be computed in
time Opn log nq [1].

Definition (Half-edge). A half-edge is a directed line segment with an origin vertex and a
destination vertex.

Definition (One-ring of a point). The one-ring of a point x in a triangulation T is the set of
all vertices adjacent to x in T .

Definition (Kernel of a polygon). The kernel of a polygon Q is a non-empty set K of points
in the interior of Q such that there exists a line segment from every point in K to every other
point in Q lying entirely inside Q. The kernel of a convex polygon is its interior.

Definition (Flippable Edge). An edge e in a triangulation T is called flippable if its end points
and its two opposite vertices form a convex quadrilateral.
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3 Optimal Transport Formulation

Let S “ tp1, p2, . . . , pnu denote the input point set. Each point pi is seen as a Dirac measure
µi centered at pi and having mass mi. Therefore, the point set is considered as a measure
µ “

ř

i µi with µippjq “ miδij . We assume that we are given a triangulation T of S and a point
to simplex assignment that maps every point pi to either a vertex v or an edge e of T . The
assignment will be described later. Every vertex v of T is seen as a Dirac measure and every
edge e of T is a uniform 1D measure defined over the edge e.

Let π denote the transport plan satisfying the point to simplex assignment and let W2pπq
denote its transport cost. For every vertex v of T , let Sv denote the set of points of S assigned to
the vertex v, and for every edge e of T , let Se denote the points of S assigned to the edge e. We
assume that the sets tSe | e P T uYtSv | v P T u are mutually disjoint, and YvPT SvYYePT Se “ S.
Let Mv denote the total mass of points in Sv and let Me denote the total mass of points in Se.
Then, we have

ř

vPT Mv `
ř

ePT Me “
ř

imi. We formulate the cost of assigning a point pi to
either an edge or a vertex of T .

Points to vertex - For a vertex v P T , the cost to transport the measure on Sv to the
Dirac measure centered on v with mass Mv is given by

W2pv,Svq “

d

ÿ

piPSv

mi||pi ´ v||2.

Points to edge - The measure on an edge e P T is the uniform measure of value Me
|e| , where

|e| denotes the length of edge e. The transport plan here is decomposed into a normal and a
tangential component to e. The normal component is derived from the orthogonal projection
of Se onto e. Precisely, for every pi P Se, let qi denote the orthogonal projection of pi onto e.
The transport cost of the normal plan is given by

Npe,Seq “

d

ÿ

piPSe

mi||pi ´ qi||2.

The tangential plan is obtained as follows: the projected points tqiu are sorted along the
edge e. By abuse of notation, let qi denote the points in sorted order. The edge e is partitioned
into |Se| segment bins, with the i-th bin having length li “ pmi{Meq|e|. Here, mi is the mass of
point pi whose projection is qi. For every 1 ď i ď |Se|, we set a 1D coordinate axis along the
edge e with origin at the center of the i-th bin, and denote by ci the coordinate of qi in this
coordinate axis. The tangential cost ti of pi is given by

ti “
Me

|e|

ż li{2

´li{2
px´ ciq

2dx “ mi

ˆ

l2i
12
` c2i

˙

.

We add these costs to get the tangential component of the optimal transport cost for the entire
edge e:

T pe,Seq “

g

f

f

e

ÿ

piPSe

mi

ˆ

l2i
12
` c2i

˙

.

The decomposition of the transport plan into a normal and tangential component ensures that
boundaries and sharp features are preserved. Refer to [7] for further details. The total cost to
transport S to T through the transport plan π is given by

W2pπq “

d

ÿ

ePT
rNpe,Seq

2 ` T pe,Seq
2s `

ÿ

vPT
W2pv,Svq

2.
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3.1 Point to simplex assignment

Given a triangulation T , we now describe the method of assigning points of S to edges and
vertices of T . Each point pi P S is first assigned temporarily to the closest edge of T (breaking
ties arbitrarily). This results into a partition of S into subsets Se. Now for every edge e, the
points in Se are either kept assigned to e or every point of Se is assigned to its closest endpoint
of e. The assignment that minimizes the optimal transport cost, as described above, is chosen.

4 Algorithm

We now give the pseudocode of the algorithm.

Input: point set S “ tp1, p2, . . . , pnu.
1: Construct Delaunay triangulation T0 of S.
2: Compute initial plan π0 from S to T0.
3: k Ð 0.
4: repeat
5: Pick best half-edge e “ pxi, xjq to collapse (Simplification)
6: Set Ni,1 the 1-ring of xi
7: Create Tk`1 by merging xi onto xj
8: π1k`1 :“ πk with local reassignments in Ni,1

9: Optimize position of vertices in Ni,1 (Relocation)
10: πk`1 :“ π1k`1 with local reassignments in edges adjacent to Ni,1

11: k Ð k ` 1
12: until (desired vertex count)
13: Filter edges based on relevance(optional)
Output: vertices and edges of Tm

The first step of the algorithm is constructing a Delaunay triangulation T0 of the input point
set S. The initial transport plan π0 is the trivial assignment of every point to its corresponding
vertex, with the cost of π0 being zero.

4.1 Simplification

Simplification of a triangulation Tk is performed through a series of half-edge collapses. Col-
lapsing an edge changes a triangulation Tk to a triangulation Tk`1, and thus changes the cost of
the transport plan by δk “ W2pπk`1q ´W2pπkq. Since the goal is to minimize increase in total
cost, edge collapses are performed in increasing order of δ. To this end, all feasible collapses
are initially simulated, and their associated δ is added to a dynamic priority queue sorted in
increasing order. Each edge collapse is done by repeatedly popping from the queue the next
edge to collapse, performing the collapse, updating the transport plan and cost, and updat-
ing the priority queue. We note that updating the transport plan involves only the edges in
the one-ring of the removed vertex and updating the priority queue is required only for edges
incident to the modified one-ring.

4.2 Collapsing half-edges

We note that collapsing a half-edge pxi, xjq can result in the edges incident to xi intersecting
the remaining edges in points different from the input points. This is called a fold-over in the
triangulation. We do not want this to happen, since we want the vertices of the triangulation
to be from the input points. Thus, we say that a half-edge is collapsible if its collapse creates
neither overlaps nor fold-overs in the triangulation ([7], Figure 7). Every half-edge is made
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collapsible by the following procedure: let pxi, xjq denote the half-edge we want to collapse.
Let Pxi denote the counter-clockwise oriented polygon formed by the one-ring of xi, and let
Kxi denote its kernel. We say that an edge pa, bq P Pxi is blocking xj if the triangle pxj , a, bq
has clockwise orientation. We note that blocking edges are exactly the edges that result in the
creation of fold-overs when collapsing pxi, xjq. A blocking edge pa, bq is removed from Pxi by
flipping either pa, xiq or pb, xiq. We observe that one of these edges is always flippable. For
every blocking edge, flipping continues until there are no blocking edges in Pxi .

4.3 Vertex Relocation

The triangulations obtained by edge collapses have their vertices on the input points. However,
the presence of noise and missing data make interpolated triangulations poorly adapted to
recover features. In order to overcome this problem, vertex relocation is performed after every
edge collapse. The square of the transport cost associated with a vertex v of T , and the normal
cost associated with edges adjacent to v is given by

ÿ

piPSv

mi||pi ´ v||
2 `

ÿ

bPN1pvq

ÿ

piPSpv,bq

mi||pi ´ qi||
2.

Here, N1,v denotes the one-ring of v. The optimal position v˚ of v is computed by equating the
gradient of the above expression to zero. Precisely, if qi “ p1´ λiqv ` λib, 0 ď λi ď 1, then

v˚ “

ř

piPSv
mipi `

ř

bPN1,v

ř

piPSpv,bq
mip1´ λiqppi ´ λibq

Mv `
ř

bPN1,v

ř

piPSpv,bq
mip1´ λiq2

.

After relocating v, a new transport plan πk`1, and its associated cost are computed.

4.4 Edge Filtering

The presence of noise and outliers can lead to a few undesirable edges e with positive Me in the
triangulation. Therefore, a notion of relevance re is defined for such edges as

re “
Me|e|

2

Npe,Seq
2 ` T pe,Seq

2
.

In the triangulation, only the edges with relevance above a certain threshold are kept. Perform-
ing edge filtering is optional, and depends on the application.

5 Numerical Experiments

The authors use CGAL [8] library to implement the shape reconstruction algorithm. The algo-
rithm takes as input point sets with mass attributes, and a desired vertex count for the output.
In order to speed up the computations, instead of using the entire input point set, a random
sample of the point set is used and a Delaunay triangulation of this sample is constructed. In
addition, for the simplification process, initially half-edge collapses for a random set of around
10 edges are simulated, and the collapse with the smallest δ is performed. When the number
of vertices reached is 5 times the vertices in the final count, the exhaustive search for the best
half-edge collapse is resumed. Vertex relocation is helpful only when a sufficient number of
input points are assigned to the edges of the triangulation. Since this number is small in the
beginning of the algorithm, vertex relocation is performed only after the last 100 edge collapses.

Please refer to Section 4 of [7] for details of the numerical experiments. The algorithm
performs well in recovering boundaries and sharp features. The running time of the algorithm
is small, for example for 20,000 input points, using the speed up methods described in the last
paragraph, it takes 51 seconds to obtain the final triangulation.
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