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1 Introduction

In this paper, we are interested in the convergence of the solution to the entropy-regularized
optimal transport (OT) problem to the non-regularized OT problem, as described in [CDPS17].
All these results will be in the case of Euclidean space.

1.1 Background and notation

We write PpRmq to denote the set of Borel probability measures on Rn. Given µ, ν P PpRmq, we
write Πpµ, νq to denote the set of couplings between µ and ν. We use the narrow/weak topology
on PpRmq: for any sequence of measures pµnqn, we have

µn Ñ µ iff

»
f dµn Ñ

»
f dµ

for all continuous, bounded test functions f : Rm Ñ R.
We write PrpRnq denote the elements of PpRnq that are absolutely continuous with respect

to Lebesgue measure. By the Radon-Nikodym theorem, for each µ P PrpRnq there exists a
density function fµ such that for any Borel set σ � Rn, we have:

µpσq �
»
σ
fµpxq dx

Then for any µ P PpRmq, we define the (negative) differential entropy as follows:

HRmpµq :�
#³

Rm fµpxq log fµpxq dx : µ P PrpRmq
�8 : otherwise.

For any µ P PpRnq, we denote entropy by H1pµq, and for any γ P PpRn � Rnq, we denote
entropy by H2pγq.
Remark 1. In the discrete setting, the discrete entropy analogue of the term above would
always be negative. However, the differential entropy can have both positive and negative
parts. For example, the uniform distribution on an interval r0, as has density 1{a, and if a   1,
then p1{aq logp1{aq ¡ 0.

The Euclidean norm is denoted } � }. For any µ P PpRmq, the second moment is defined as:

MRmpµq :�
»
Rm

}x}2 dµpxq

We let P2pRmq denote the elements of PpRmq with finite second moments.
For any µ P PpRnq, we denote MRn by M1pµq, and for any γ P PpRn � Rnq, we denote

MRn�Rn by M2pγq.
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2 Statement of the main result

Let µ, ν P PpRnq. Suppose also that they are absolutely continuous with respect to Lebesgue
measure, have finite second moments, and have finite entropy.

Let c : Rn � Rn Ñ R be the squared Euclidean distance:

cpx, yq :� }x� y}2.
For any γ P PpRn � Rnq with density fγ , write

xc, γy :�
»
Rn�Rn

cpx, yqfγpx, yq dx dy.

The OT problem is to find:

arg min
γPΠpµ,νq

xc, γy . (1)

Here we are guaranteed the existence of a minimizer by compactness of Πpµ, νq and by lower
semicontinuity of the map γ ÞÑ xc, γy. Compactness of Πpµ, νq follows from Prokhorov’ theorem
and by verifying that Πpµ, νq is closed.

Let ε ¡ 0. The ε-entropy regularized OT problem is to find

arg min
γPΠpµ,νq

xc, γy � εHpγq. (2)

Also define the 2-Wasserstein distance W 2pµ, νq :� minγPΠpµ,νq xc, γy and its entropy regu-
larized variant W 2

ε pµ, νq :� minγPΠpµ,νq pxc, γy � εH2pγqq.
The motivation for studying the ε-entropy regularized problem is that as ε Ñ 0, we will

obtain a quantity that approximates the 2-Wasserstein distance between µ and ν. More specif-
ically, let pεkqkPN be a nonnegative sequence converging to 0, and let γk denote the minimizer
of Equation 2 corresponding to each k P N. We wish to show that these minimizers converge to
a minimizer for Equation 1. This property can be seen as a consequence of the Γ-convergence
of certain functionals that we define next.

Let µ, ν P Pr2pRnq, with H1pµq   8, H1pνq   8. Let pεkqk P RN
�, εk Ñ 0.

Define Fk : PpRn � Rnq Ñ RY t8u by:

γ ÞÑ
#
xc, γy � εkH2pγq : γ P Πpµ, νq
�8 : otherwise.

Also define F : PpRn � Rnq Ñ RY t8u by:

γ ÞÑ
#
xc, γy : γ P Πpµ, νq
�8 : otherwise.

Definition 1. We say Fk Γ-converges to F (denoted Fk
ΓÝÑ F) with respect to the the narrow

topology if for all γ P PpRn � Rnq, the following are satisfied:

• (Liminf condition/lower bound) For any sequence pγkqk in PpRn�Rnq such that γk
narrowÝÝÝÝÑ

γ, we have
Fpγq ¤ lim inf

kÑ8
Fkpγkq.

• (Limsup condition/recovery sequence) There exists a sequence pγkqk in PpRn � Rnq such
that γk

narrowÝÝÝÝÑ γ and
Fpγq ¥ lim sup

kÑ8
Fkpγkq.
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To motivate the main result, we first list some facts involving coercivity of functions. A
function f : X Ñ R is coercive if tf ¤ tu is countably compact for each t P R. Note that F is
coercive, by precompactness of Πpµ, νq. A sequence pfkqk of functions X Ñ R is equi-coercive
if for each t P R, there exists a compact set Kt � X such that tfk ¤ tu � Kt for all k P N.
pFkqk is equi-coercive by compactness of Πpµ, νq. The next remark connects the notions of
Γ-convergence and equicoercivity.

Remark 2. Since pFkqk is equi-coercive and Γ-converges to F , then limk inf Fk � inf F and
any cluster point of the sequence of minimizers µk of Fk is a minimizer for F . In particular,
since there is a unique minimizer of F via a result of Brenier, the sequence pµkqk converges
narrowly to the unique minimizer for F .

Finally, we state the main result described in this paper.

Theorem 3. The sequence pFkqk Γ-converges to F with respect to the narrow topology.

3 Proof of the main result

We begin with the longer part of the proof, which is to build the recovery sequence.

Definition 2 (Block Approximation). Let µ, ν P Pr2pRnq, H1pµq, H1pνq   8, γ P Πpµ, νq.
Given k � pk1, . . . , knq P Zn, define Qk :� rk1, k1 � 1q � . . .� rkn, kn � 1q � Rn, and for ` ¡ 0,
write Q`k :� ` �Qk. Define the block approximation of γ at scale ` by

γ` :�
¸

pj,kqPpZnq2
γ
�
Q`j �Q`k

	
pµj,` b νk,`q,

where for every Borel set σ � Rn,

µj,`pσq :�
$&
%
µpσXQ`jq

µpQ`jq
if µpQ`jq ¡ 0,

0 otherwise.
νk,`pσq :�

$&
%
νpσXQ`jq

νpQ`kq
if νpQ`kq ¡ 0,

0 otherwise.

An application of the π�λ theorem along with verification on measurable rectangles shows
that γ` is a Borel probability measure with the following density:

fγ`px, yq �
$&
%
γpQ`j �Q`kq fµpxq fνpyqµpQ`jq νpQ

`
kq

if µpQ`jq ¡ 0 and νpQ`kq ¡ 0,

0 otherwise,
(3)

where pj, kq P pZnq2 is uniquely determined by px, yq P Q`j �Q`k.

The intuition behind the block approximation is that it is a “separation of variables” trick,
allowing us to write γ` in the form fµ � fν . This enables us to apply tools such as Fubini’s
theorem, and also to apply logarithm rules to separate terms.

The next proposition shows that the block approximation of a coupling is still a coupling.

Proposition 4. For γ P Πpµ, νq the block approximation γ` is also in Πpµ, νq.
Proof. For any Borel set σ � Rn, pµj,` b νk,`qpRn � σq � νk,`pσq if µpQ`jq ¡ 0, and 0 otherwise.
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Also, γ
�
Q`j �Q`k

	
� 0 if µpQ`jq � 0. Thus

γ`pRn � σq �
¸

pj,kqPpZnq2
γ
�
Q`j �Q`k

	
pµj,` b νk,`qpRn � σq

�
¸

pj,kqPpZnq2:

µpQ`jq¡0

γ
�
Q`j �Q`k

	
νk,`pσq

�
¸

pj,kqPpZnq2:

µpQ`jq¡0

γ
�
Q`j �Q`k

	
νk,`pσq �

¸
pj,kqPpZnq2:

µpQ`jq�0

γ
�
Q`j �Q`k

	
νk,`pσq

�
¸
kPZn

νk,`pσq
¸
jPZn

γ
�
Q`j �Q`k

	
loooooooooomoooooooooon

�νpQ`kq

� νpσq.

The next lemma gives a quantitative bound on the quality of the block approximation.

Lemma 5 (A geometric perturbation lemma). Let tQiuiPI be a countable partition of Rn into
Borel sets with supiPI diampQiq ¤ C   8, i.e. }x� y}2 ¤ C2 for x, y P Qi for any i P I. Let µ,
ν P PpRnq be such that µpQiq � νpQiq for all i P I.

Then W 2pµ, νq ¤ C2.

Proof. Denote by Î the subset of I such that µpQiq � νpQiq ¡ 0 for i P Î.
For i P Î and every Borel σ � Rn define

µipσq :� µpσ XQiq
µpQiq

Define νi analogously.
Then µi, νi P PpRnq, with support contained in Qi.

For every i P Î let γi P Πpµi, νiq. Then supp γi � Qi
2

and so

xc, γiy �
»
Rn�Rn

}x� y}2 dγipx, yq �
»
Qi�Qi

}x� y}2 dγipx, yq ¤ C2 .

Define γ :� °
iPÎ µpQiq γi.

Then γ P Πpµ, νq. Here we use the fact that tQiui is a partition of Rn.
We then have

W 2pµ, νq ¤ xc, γy �
¸
iPÎ

µpQiq xc, γiy ¤
¸
iPÎ

µpQiqC2 � C2.

The preceding lemma is used to give the following specific bound on the quality of the block
approximation. Note the dependence on the dimension of the ambient space.

Corollary 6. Let µ, ν P Pr2pRnq. For γ P Πpµ, νq and its block approximation γ`,

W 2pγ, γ`q ¤ 2n `2 (4)

and γ`
narrowÝÝÝÝÑ γ as `Ñ 0�.

Proof sketch. An m-cube with side length ` has diam2 � m`2. We are in the case of Rn � Rn,
so m � 2n.
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Corollary 7. The transport cost of the block approximation converges:

lim
`Ñ0�

xc, γ`y � xc, γy .

Proof. The previous result shows that W 2pγk, γq Ñ 0 as ` Ñ 0. Recall that convergence in
the 2-Wasserstein space implies convergence in integration against all test functions growing at
most as x ÞÑ }x}2 [Vil08, Definition 6.8]. So for any ϕ such that |ϕpzq| ¤ }z}2, we have»

Rn�Rn
ϕpzq dγ`px, yq Ñ

»
Rn�Rn

ϕpzq dγ.

Now observe that by the parallelogram law, the map px, yq ÞÑ }x� y}2 is bounded above by
2}x}2 � 2}y}2 � 2}px, yq}2. Plugging this into the integral above gives the result.

It remains to control the entropy of the block approximation. The following lemmas will
turn out to be useful:

Lemma 8. There exists a constant C ¡ 0 and an exponent 0   α   1 (both depending on n)
such that for every µ P Pr2pRnq one has

HRnpµq ¥ �C pMRnpµq � 1qα , Hneg,Rnpµq ¤ C pMRnpµq � 1qα .

Proof. See [JKO98, Proposition 4.1].

Lemma 9. There exist constants C ¡ 0, α P p0, 1q such that for µ P PpRnq,
¸
jPZn

µpQ`jq log
�
µpQ`jq

	
¥ �CpM1pµq � n `2 � 1qα � n logp`q .

Proof. Consider the function

fµ`pxq :�
#

1
`nµpQ`jq : x P Q`j
0 : otherwise.

Then fµ` is the density of a probability measure µ`. In particular, µ`pQ`jq � µpQ`jq.
We have¸

jPZn
µpQ`jq log

�
µpQ`jq

	
�
¸
jPZn

»
Q`j

fµ`pxq logpµpQ`jqq dx

�
¸
jPZn

»
Q`j

fµ`pxq log pµ`pxq � `nq dx

�
»
Rn
fµ`pxq log pfµ`pxq � `nq

� H1pµ`q � n logp`q ¥ �KpMpµ`q � 1qα � n logp`q

for suitable constants K ¡ 0, α P p0, 1q by the previous lemma.
Now diampQ`jq �

?
n ` for all j P Zn, so a previous result shows that W 2pµ, µ`q ¤ n `2. Since

}y}2 ¤ 2}x}2 � 2}x� y}2, we have the moment bound M1pνq ¤ 2M1pµq � 2W 2pµ, νq. Using the
moment bound above, we replace the M1pµ`q term by a M1pµq � n`2 term and get the desired
result for some adjusted constant C ¡ 0.

The next proposition bounds the entropy of the block approximation.
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Proposition 10 (Bounding Entropy of Block Approximation). There are constants C ¡ 0 and
α P p0, 1q such that the entropy of the block approximation γ` of γ P Πpµ, νq at scale ` ¡ 0 is
bounded by

H2pγ`q ¤ H1pµq �H1pνq � C
�
pMpµq � n `2 � 1qα � pMpνq � n `2 � 1qα � 2n logp`q

	
.

Proof.

H2pγ`q �
¸

pj,kqPpZnq2:

µpQ`jq¡0, νpQ`kq¡0

»
Q`j�Q

`
k

γpQ`j �Q`kq
fµpxq fνpyq
µpQ`jq νpQ`kq

log

�
γpQ`j �Q`kq

fµpxq fνpyq
µpQ`jq νpQ`kq

�
dx dy

�
¸

pj,kqPpZnq2:

µpQ`jq¡0, νpQ`kq¡0

γpQ`j �Q`kq

�
���log

�
γpQ`j �Q`kq

	
loooooooooomoooooooooon

¤0

�
»
Q`j

fµpxq
µpQ`jq

log

�
fµpxq
µpQ`jq

�
dx

�
»
Q`k

fνpyq
νpQ`kq

log

�
fνpyq
νpQ`kq



dy

�

¤ H1pµq �H1pνq �
¸
jPZn

µpQ`jq log
�
µpQ`jq

	
�
¸
kPZn

νpQ`kq log
�
νpQ`kq

	
.

The second equality follows from properties of logarithms and couplings. The inequality
follows by using properties of couplings and log on the latter two terms. The first term is
bounded above by 0, and disappears. From the last step, the result follows by using one of the
previous lemmas on the two negative terms.

Finally, we have:

Proposition 11 (Limsup Condition). For every γ P PpRn � Rnq there is a non-negative se-
quence p`kqkPN converging to zero, such that

Fpγq ¥ lim sup
kÑ8

Fkpγ`kq .

Proof sketch. Let γ P Πpµ, νq. We saw previously that γ`k P Πpµ, νq.
By the previous proposition, we have

H2pγ`kq ¤ H1pµq �H1pνq � C
�
pMpµq � n `2k � 1qα � pMpνq � n `2k � 1qα � 2n logp`kq

	
.

For `k � εk, we have lim supkÑ�8 εkH2pγ`kq ¤ 0. Here we used the fact that εk logp`kq Ñ 0 as
k Ñ8. Thus

lim sup
kÑ8

Fkpγ`kq � lim sup
kÑ8

xc, γ`ky � εkH2pγ`kq ¤ lim
kÑ8

xc, γ`ky � xc, γy � Fpγq.

The lower bound condition for Γ-convergence is much easier.

Proposition 12 (Liminf Condition). Let γ P PpRn�Rnq and a sequence pγkqkPN in PpRn�Rnq
such that γk Ñ γ narrowly. Then

Fpγq ¤ lim inf
kÑ8

Fkpγkq .

Proof sketch. By a previous lemma, there is a finite constant C   8 such that Hneg,2pγkq ¤ C.
Using this, we verify lim infkÑ8 εkH2pγkq ¥ 0. By narrow lower semicontinuity of γ ÞÑ pc, γq
[Vil08], we have:

Fpγq ¤ lim inf
kÑ8

Fpγkq ¤ lim inf
kÑ8

Fpγkq � εkH2pγkq � lim inf
kÑ8

Fkpγkq.
The main result now follows by combining the previous two propositions.
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4 Discussion

The bulk of the work above lay in proving lim supkÑ�8 εkH2pγ`kq ¤ 0. The block approxima-
tion is an interesting and suitable way to approximate any coupling in the Euclidean case.
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