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1 Introduction

In this paper, we are interested in the convergence of the solution to the entropy-regularized
optimal transport (OT) problem to the non-regularized OT problem, as described in [CDPS17].
All these results will be in the case of Euclidean space.

1.1 Background and notation

We write P(R™) to denote the set of Borel probability measures on R™. Given p, v € P(R™), we
write II(u, v) to denote the set of couplings between p and v. We use the narrow/weak topology
on P(R™): for any sequence of measures (f,)n, we have

ﬁm—»uﬁffme—»jfdu

for all continuous, bounded test functions f : R™ — R.

We write P"(R™) denote the elements of P(R"™) that are absolutely continuous with respect
to Lebesgue measure. By the Radon-Nikodym theorem, for each p € P"(R™) there exists a
density function f, such that for any Borel set o € R", we have:

(o) = | fula)da
g
Then for any u € P(R™), we define the (negative) differential entropy as follows:

SRm fu(z)log fu(x)dx :pe P"(R™)
400 : otherwise.

Hpgm(u) = {

For any p € P(R™), we denote entropy by Hi(u), and for any v € P(R™ x R™), we denote
entropy by Ha (7).

Remark 1. In the discrete setting, the discrete entropy analogue of the term above would
always be negative. However, the differential entropy can have both positive and negative
parts. For example, the uniform distribution on an interval [0, a] has density 1/a, and if a < 1,
then (1/a)log(1/a) > 0.

The Euclidean norm is denoted | - ||. For any p € P(R™), the second moment is defined as:
Man() = | JalP du(o)

We let P2(R™) denote the elements of P(R™) with finite second moments.
For any p € P(R™), we denote Mgn by Mi(u), and for any v € P(R™ x R™), we denote
MRnXRn by MQ(’)/).



2 Statement of the main result

Let pu,v € P(R™). Suppose also that they are absolutely continuous with respect to Lebesgue
measure, have finite second moments, and have finite entropy.
Let ¢: R™ x R™ — R be the squared Euclidean distance:

c(z,y) := [z —y|*.

For any v € P(R™ x R™) with density f,, write

= | o) dedy.
R xR"™
The OT problem is to find:

argmin {c, ). (1)
vell(p,v)
Here we are guaranteed the existence of a minimizer by compactness of II(y,v) and by lower
semicontinuity of the map v +— {¢,~). Compactness of II{j, /) follows from Prokhorov’ theorem
and by verifying that II(u,v) is closed.
Let € > 0. The e-entropy reqularized OT problem is to find

arg min e, 7) + H (7). (2)
Yyell(p,v)

Also define the 2-Wasserstein distance W?2(u,v) := min,er(,,.) (¢, 7, and its entropy regu-
larized variant W2 (p, v) := min,eri,.) ((¢,7) + eHa(7)).

The motivation for studying the e-entropy regularized problem is that as ¢ — 0, we will
obtain a quantity that approximates the 2-Wasserstein distance between p and v. More specif-
ically, let (e)ken be a nonnegative sequence converging to 0, and let 74 denote the minimizer
of Equation [2] corresponding to each k € N. We wish to show that these minimizers converge to
a minimizer for Equation [Il This property can be seen as a consequence of the I'-convergence
of certain functionals that we define next.

Let p,v € P5(R™), with Hy(u) < oo, Hi(v) < 0. Let (ex)x € RY, e — 0.

Define Fj, : P(R™ x R") —» R u {00} by:

R (e, +exHa(y) v ell(p,v)
+o0o : otherwise.

Also define F : P(R" x R") — R u {0} by:

(e, yelpv)
v .
+0 : otherwise.
Definition 1. We say Fj, ['-converges to F (denoted Fj LF ) with respect to the the narrow
topology if for all ¥ € P(R™ x R™), the following are satisfied:

narrow
—_—

e (Liminf condition/lower bound) For any sequence (v ) in P(R™ x R™) such that i
7, we have

F(y) < liminf Fp(yx).
k—o0

e (Limsup condition/recovery sequence) There exists a sequence () in P(R™ x R™) such
that 7, ——% ~ and

F(v) = limsup Fr(7k)-

k—oo



To motivate the main result, we first list some facts involving coercivity of functions. A
function f : X — R is coercive if {f <t} is countably compact for each ¢t € R. Note that F is
coercive, by precompactness of IT(u, ). A sequence (fx)x of functions X — R is equi-coercive
if for each t € R, there exists a compact set K; © X such that {fy < t} € K; for all k € N.
(Fr)k is equi-coercive by compactness of II(u,r). The next remark connects the notions of
I'-convergence and equicoercivity.

Remark 2. Since (Fy)y is equi-coercive and I'-converges to F, then limy inf F = inf F and
any cluster point of the sequence of minimizers uj of Fj is a minimizer for F. In particular,
since there is a unique minimizer of F via a result of Brenier, the sequence () converges
narrowly to the unique minimizer for F.

Finally, we state the main result described in this paper.

Theorem 3. The sequence (Fi )i I'-converges to F with respect to the narrow topology.

3 Proof of the main result

We begin with the longer part of the proof, which is to build the recovery sequence.

Definition 2 (Block Approximation). Let u, v € P5(R™), Hi(n), Hi(v) < oo, v € I(u,v).
Given k = (ki,...,ky) € Z™, define Q := [k1,k1 + 1) x ... X [kn, ky +1) € R, and for ¢ > 0,
write Qﬁ := £ - Q. Define the block approximation of « at scale £ by

Y= >, 7 (Qﬁ x Qi) (1je @ Vi0),

(5,k)e(Zm)?

where for every Borel set 0 < R",

u(amQﬁ) . V(JmQﬁ) ]
(o) = 4 @) if ,U(Qﬁ) > 0, Vo) = 4 @ if v(Q4) >0,
7, : J 7 =

0 otherwise. 0 otherwise.

An application of the m — A\ theorem along with verification on measurable rectangles shows
that v is a Borel probability measure with the following density:

QG * Q) lighigly i w(@) > 0 and w(Qf) > 0

otherwise,

frla,y) = (3)

where (4, k) € (Z™)? is uniquely determined by (x,%) € Qﬁ x Q4.

The intuition behind the block approximation is that it is a “separation of variables” trick,
allowing us to write 7, in the form f, - f,. This enables us to apply tools such as Fubini’s
theorem, and also to apply logarithm rules to separate terms.

The next proposition shows that the block approximation of a coupling is still a coupling.

Proposition 4. For v € II(u,v) the block approximation ~, is also in I(u,v).

Proof. For any Borel set 0 < R", (10 @ v 0)(R™ x 0) = vy ¢(0) if M(Qg) > 0, and 0 otherwise.



Also, 7y (Q§ x Qg) = 0if 4(Qf) = 0. Thus

W® xo)= 3 (@ % Qf) (e @ )R x 0)
(G ey

= Y (@ % Q) el

(J,k)e(zm)?:

1(Q%)>0
_ Y Y
= Y (@ @) mer+ Y (@ % QL) malo)
(J.k)e(Zm)?: (j.k)e(Zm)2:
(Q4)>0 w(@5)=0
= 2 Vk,e(0) Z Y (Qﬁ X Qi) = v(0o). O
keZm JEL™
(@)

The next lemma gives a quantitative bound on the quality of the block approximation.

Lemma 5 (A geometric perturbation lemma). Let {Q;}ier be a countable partition of R™ into
Borel sets with sup;e; diam(Q;) < C < w, i.e. |z —y|?> < C? forz, y€ Q; for any i€ I. Let u,
v e P(R™) be such that 1(Q;) = v(Q;) for allie 1.

Then W2(pu,v) < C2.

Proof. Denote by I the subset of I such that u(Q;) = v(Q;) > 0 forie I.
For i € I and every Borel 0 — R" define

(o) plo N Qi)
ilo) Qi)

Define v; analogously. o
Then u;, v; € P(R™), with support contained in Q).
For every i € I let ~; € II(i, v;). Then supp~y; C @2 and so

(e = jR o=yl ) - j & — |2 dvila, ) < C2
n>< n

QixQ;

Define v := > #(Qi) 7i-
Then ~ € II(p, v). Here we use the fact that {Q;}; is a partition of R™.
We then have

W2(p,v) < Leyy) = D Qi) {eyyiy < ), Qi) €7 = C2. O
iel iel

The preceding lemma is used to give the following specific bound on the quality of the block
approximation. Note the dependence on the dimension of the ambient space.

Corollary 6. Let i, v € P5(R™). For v € Il(u,v) and its block approximation 7y,

W2(y, %) < 2nt? (4)

and vy 2y as £ — 07,

Proof sketch. An m-cube with side length ¢ has diam? = m¢2. We are in the case of R” x R”",
som = 2n. 0



Corollary 7. The transport cost of the block approximation converges:
lim {c, ={ec,v).
Jim (e,%0) = (e7)

Proof. The previous result shows that W?2(v;,7) — 0 as £ — 0. Recall that convergence in
the 2-Wasserstein space implies convergence in integration against all test functions growing at
most as x + |z|? [Vil08, Definition 6.8]. So for any ¢ such that |p(2)| < |z[?, we have

J ©(2) dye(z,y) — o(z) dy.
R7 xR™ R7 xR™

Now observe that by the parallelogram law, the map (x,%) ~ ||z — y|? is bounded above by
2|x)? + 2|y||* = 2||(x,y)|?. Plugging this into the integral above gives the result. O

It remains to control the entropy of the block approximation. The following lemmas will
turn out to be useful:

Lemma 8. There exists a constant C > 0 and an exponent 0 < o < 1 (both depending on n)
such that for every u € P5(R™) one has

Hgn (/U’) = -C (M]R" (:U’) + l)av HnegR” (/L) <C (MR" (/U') + 1)a .
Proof. See [JKO98|, Proposition 4.1]. O

Lemma 9. There exist constants C > 0, a € (0,1) such that for € P(R™),

> wl@)log (1(@0) = ~C(Mi () + 1 + 1) + n log(0).
JEZ™

Proof. Consider the function
1 ¢ . ¢
funlw) = { 1) e
‘ 0 : otherwise.

Then f,, is the density of a probability measure ;. In particular, ,ug(Qg) = ,u(Qﬁ)
We have

> u(@)los (n@)) = ¥ fQﬁ i () 08 (Q5)) d

JEL™ JEL™

Z JQL{ fue () log (pe(zx) - £7) dx

JEZ™
- | ful@or (@) -
= Hi(pe) +n og(¢) = —K (M) + 1)* + 1 log (0

for suitable constants K > 0, a € (0,1) by the previous lemma.

Now diam(Qﬁ) = y/n{ for all j € Z", so a previous result shows that W?(u, i) < n¢?. Since
|yl|? < 2|x|? + 2|z — y||?, we have the moment bound M (v) < 2Mi(p) + 2W?2(u,v). Using the
moment bound above, we replace the M (py) term by a Mi(u) + nf? term and get the desired
result for some adjusted constant C' > 0. O

The next proposition bounds the entropy of the block approximation.



Proposition 10 (Bounding Entropy of Block Approximation). There are constants C > 0 and
€ (0,1) such that the entropy of the block approximation v, of v € I{u,v) at scale £ > 0 is
bounded by

Ho(ve) < Hy(p) + Hy(v) + C ((M(u) F 1)+ (M) +n+1)% —2n 1og(e)) :
Proof.

gty L@ W) ¢ oy @) frly) |
0= 2 ey @ W@y g(”(Qﬂ W Qv >>d W

1(Q5)>0, u( QZ)>0

B Ex Qb |1 Con) s [ fe@ (f,Ax))d
u,kénv: e \Og(V(QﬁXQ’“))J Q! (@) o v

wQ4)>0,1(QF)>0 <0

() o fo(y)
o vi@p (V(Qi)) dy]

< Hi(p)+ Hi(v) = 3 pl@)log (@) = . w(@f) log (1(Qh)) -

jezn kezn

The second equality follows from properties of logarithms and couplings. The inequality
follows by using properties of couplings and log on the latter two terms. The first term is
bounded above by 0, and disappears. From the last step, the result follows by using one of the
previous lemmas on the two negative terms. O

Finally, we have:

Proposition 11 (Limsup Condition). For every v € P(R™ x R") there is a non-negative se-
quence (Ur)gen converging to zero, such that

F(v) = limsup Fr(ve, ) -

k—0
Proof sketch. Let v € II(u,v). We saw previously that v, € II(x,v).
By the previous proposition, we have

Hy(yg,) < Hu(r) + Hi(v) + C ((M(u) + 0 + 1) + (M(v) + 06 +1)* = 2n log(ty) )

For (), = €}, we have limsup;,_, o, €x Ha(7,,,) < 0. Here we used the fact that ¢; log(4) — 0 as
k — oo. Thus

lim sup F(7ye,) = hiﬂ sup (¢, Ve, + exHa(7e,,) < Jim (e, v,y = e,y = F(). O

k—0o0

The lower bound condition for I'-convergence is much easier.

Proposition 12 (Liminf Condition). Let v € P(R" xR") and a sequence (yi)ken in P(R™ xR™)
such that v — v narrowly. Then

F(y) <liminf F () -
k—o0

Proof sketch. By a previous lemma, there is a finite constant C' < o0 such that Hyeg2(7%) < C.
Using this, we verify liminfy o ex Ha(7%) = 0. By narrow lower semicontinuity of v +— (c,~)
[Vil0g|, we have:

F(v) < liminf F(v) < liminf F(yg) + exHo(yx) = lim inf Fy (vl
k—00 k—o0 k—o0

The main result now follows by combining the previous two propositions.



4 Discussion

The bulk of the work above lay in proving limsupy_, , , ex H2(7¢,) < 0. The block approxima-
tion is an interesting and suitable way to approximate any coupling in the Euclidean case.
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