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1 Introduction

Optimal transport (OT) problem is the problem of finding the optimal map of transporta-
tion between two distributions, and OT defines a powerful framework to compare probability
distributions in a geometrically faithful way. [1]. Due to its generality, OT has been applied
in many fields of computer sciences, such as the classification of multi-label outputs [2], bag of
word-embedding [3] and reflectance interpolation, color transfer, and geometry processing [4].

In Previous works, many different methods had been proposed to solve OT problem. In
1942, Kantorovitch invented Kantorovitch formulation to compute OT problem [7], which can
be solved with Network flow solvers [8]. Recently, to smooth the distance estimation of OT
problem and make the OT problem convex and more stable, some regularized methods were
proposed, such as entropic regularization and group lasso.[6],[9]. Based on entropic regular-
ization, Sinkhorn-Knopp algorithm was proposed to solve this problem [6]. However, these
methods are purely discrete and cannot cope with continuous densities. In previous work, the
only known class of methods that can overcome this limitation are so-called semi-discrete solvers
[10]. In addition, the practical impact of OT is still limited because of its computational bur-
den. Therefore, to deal with the large-scale OT problems, this report will introduce a stochastic
optimization for large-scale optimal transport [5].

To be specific, three kinds of stochastic optimization methods are introduced to cope with
three possible settings in this report:

1. For discrete OT, which compares a discrete measure with another discrete measure, the
stochastic average gradient (SAG) method is applied.

2. For semi-discrete OT, which compares a discrete measure with a continuous measure, the
stochastic gradient descent (SGD) method is applied.

3. For continuous OT, which compares a continuous measure with another continuous mea-
sure, via making use of an expansion of the dual variables in a reproducing kernel Hilbert
space (RKHS) is applied.

The following of this report will be divided into 4 sections. In section 2, the formulation of
OT and the formulation of stochastic optimization are introduced, In section 3 , the background
of stochastic algorithm is introduced firstly, then the discrete optimal transport is introduced
and results are presented, semi-discrete optimal transport and continuous optimal transport is
introduced respectively.
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2 Problem Formulation

2.1 The definition of joint probability measures and Kullback-Leible diver-
gence

In the following we consider two metric spaces X and Y . We denote by M1�pX q the set of
positive Radon probability measures on X . Let µ P M1�pX q, ν P M1�pYq, then define the set
of joint probability measures on X � Y with marginals µ and ν as

Πpµ, νq :� tπ PM1
�pX q;@pA,Bq � X � Y, πpA� Yq � µpAq, πpX �Bq � νpBqu

To obtain the entropic regularization of OT problem, the Kullback-Leibler divergence be-
tween joint probabilities is defined as

@pπ, ξq PM1
�pX � Yq2,

KLpπ|ξq :�
»
X�Y

plogpdπ
dξ
px, yqq � 1qdξpx, yq

where dπ
dξ is the relative density of π with respect to ξ. As the Kullback-Leibler divergence is

also called the relative entropy of two different measures, that means when π does not have
a density with respect to ξ, the KLpπ|ξq :� �8. In addtion, element-wise multiplication of
vectors is denoted by d and KT denotes the transpose of a matrix K. Moreover, we also denote
that lN � p1, ..., 1qT P RN and oN � p0, ..., 0qT P RN . Besides, The Dirac measure at point x is
δx. For a set C, ιCpxq � 0 if x P C and ιCpxq � �8 otherwise.

2.2 The problem formulation of optimal transport

We denote that @pµ, νq P M1�pX q �M1�pYq, then the kantorovich formulation of OT can
be written as

minimize γ ÞÑ
»
X�Y

cpx, yqdπpx, yq

here c P CpX � Yq and cpx, yq is the cost to transport a unit of mass from x to y. This c c
is typically application-dependent, and reflects some prior knowledge on the data to process.
Then by considering of Kullback-Leibler divergence, the OT can be written in a single convex
optimization problem as

Wεpµ, νq :� min
πPΠpµ,νq

»
X�Y

cpx, yqdπpx, yq � εKLpπ|µb νq. pPεq

In addition, for any c P CpX � Yq, we define the following constraint set

Uc � tpu, vq P CpX q � CpYq;@px, yq P X � Y, upxq � vpyq ¤ cpx, yqu,

and define the approximation of its indicator function as

ιεUc
pµ, νq :�

#
ιUcpµ, νq if ε � 0

ε
³
X�Y exppupxq�vpyq�cpx,yqε qdµpxqdνpyq if ε ¡ 0

For @v P CpYq, @x P Xwe define the approximation of c-transform as

vc,εpxq :�
#

ιUcpµ, νq if ε � 0

�εlogp³Y exppvpyq�cpx,yqε qdνpyqq if ε ¡ 0
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Based on these definitions, to realize the application of stochastic optimization methods, two
dual problems are described. First, based on Fenchel-Rockafellar’s dual theorem, the dual
formulation of original OT problem Pε can be expressed as [5]

Wεpµ, νq � max
vPCpYq,uPCpX q

Fεpu, vq :�
»
X
upxqdµpxq �

»
Y
vpxqdνpyq � ιεUc

pµ, νq. pDεq

Then by solving BFεpu,vq
Bu � 0, we can obtain that for ε ¡ 0

BFεpu, vq
Bu � upxq �

»
Y

exppvpyq � cpx, yq
ε

qdνpyqexppupxq
ε
qupxq � 0 ñ

upxq � �εlogp
»
Y

exppvpyq � cpx, yq
ε

qdνpyqq � vc,εpxq

for ε � 0, as for any c P CpX�Yq, we have upxq�vpyq ¤ cpx, yq, so there is upxq ¤ cpx, yq�vpyq,
from which we can obtain the approximation of upxq � min

yPY
cpx, yq � vpyq, therefore, for ε ¥ 0,

we can obtain upxq � vc,εpxq, and plugging this expression back in pDεq, we can obtain the
semi-dual formulation of OT

Wεpµ, νq � max
vPCpYq

Hεpvq :�
»
X
vc,εpxqdµpxq �

»
Y
vpxqdνpyq � ε pSεq

To apply stochastic algorithm to dual and semi-dual problems, the equations pDεq and pSεq
must be expressed with expectations, which can be written as

@ε ¡ 0, Fεpu, vq � EX,Y rfεpX,Y, u, vqs and @ε ¥ 0, Hεpu, vq � EXrhεpX, vqs

in which X and Y are independent and distributed according to µ and ν. Therefore,when ε ¡ 0,

Fεpu, vq :�
»
X
upxqdµpxq �

»
Y
vpxqdνpyq � ιεUc

pµ, νq

�
»
X

1� upxqdµpxq �
»
Y

1� vpxqdνpyq � ιεUc
pµ, νq

�
»
X

»
Y

dνpyq � upxqdµpxq �
»
Y

»
X

dµpxq � vpyqdνpyq � ιεUc
pµ, νq

�
»
X�Y

upxqdνpyqdµpxq �
»
X�Y

vpyqdνpyqdµpxq � ε

»
X�Y

exppupxq � vpyq � cpx, yq
ε

qdµpxqdνpyq

Therefore, we can define

@ε ¡ 0, fεpX,Y, u, vqs :� upxq � vpyq � εexppupxq � vpyq � cpx, yq
ε

q,

Similarly, we can define that

@ε ¥ 0, hεpX, vqs :�
»
Y
vpxqdνpyq � vc,εpxq � ε,

Then based on above expectation maximization problem, three different stochastic algorithms
are introduced for three kinds of situations.
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3 Discrete Optimal Transport

3.1 The introduction of stochastic algorithm

In this report, the adopted stochatic algorithms are based on stochastic gradient descent
(SGD), so this algorithm is simply introduced. The fundamental of SGD is that using the
gradient of one stochastic term to replace the full gradient to maximize the objective in each
iteration. For example, for an optimized problem

J � min
ω
Qpωq � min

ω

1

n

ņ

i�1

Qipωq

in which J is the objective function and ω is the independent variable, a standard gradient
descent method in each iteration woruld be expressed as

ω :� ω � η∇Qpωq � ω � η
1

n

ņ

i�1

∇Qipωq

where η is a step size, ∇Qi is the gradient of Qi. This method is also called batch gradient
descent method. However, expensive evaluations of all gradients is needed to evaluate the sum-
gradient. To reduce the computational cost at every iteration, SGD samples a subset of all
gradients at every step, which is very effective for large-scale machine learning problems. To
further improve the performance of SGD, the stochastic average gradient (SAG) is proposed, the
convergence rate is improved from Op1{?kq to Op1{kq by keeping and averaging the previous
stochastic gradient values [11].

3.2 SGD for discrete optimal transport

Assuming µ and ν are discrete measures, and the cost matrix c P RI�J defined by ci,j �
cpxi, yjq, then the problems pPεq,pDεq and pSεq can be reformulated as

Wεpu, vq � min
πPRI�J

t
¸
i,j

ci,jπi,j � ε
¸
i,j

plog πi,j
µiνj

� 1qπi,j ;π1J � µ, πT1I � νu pPεaq

� max
uPRI ,vPRJ

¸
i

uiµi �
¸
j

vjνj � ε
¸
i,j

exppui � vj � ci,j
ε

qµiνj , pfor ε ¡ 0q pDεaq

� max
vPRJ

Hεa �
¸
iPI
hεapxi,vqµi pSεaq

hεapx,vq �
¸
jPJ

vjνj �
#

minjpcpx, yjq � vjq if ε � 0

�εlogp°jPJ exppvj�cpx,yjqε qνjq � ε if ε ¡ 0

To solve this optimization problem, the SAG is proposed. For SAG, by setting the step size
of SAG, and simple initialization (setting the initial guess of gradients and output to be zero),
this SAG can start to work. Via sampling finite gradient gi in iteration i, SAG can update
the gradient d based on previous gradient data d Ð d� gi. Finally, SAG can approach the
optimal solution of OT by calculating v Ð v � Cd in each iteration. When the termination
condition is reached, the algorithm is completed. To verify the effectiveness of the proposed
SAG, the bags of word-embeddings is adopted as numerical illustrations and Sinkhorn is used
for comparison. Results show that the SAG can be twice faster than Sinkhorn on average while
the same parallel properties can be obtained for both methods [5].
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4 Semi-Discrete Optimal Transport

For semi-discrete optimal transport, which compares a discrete measure with a continuous
measure. Therefore, assuming µ is continuous measure, which means the semi-dual problem
pSεaq is still applicable to this case. Because in pSεaq, only µ is not needed to be discrete.
However, as for SAG, the update of sampling gradient gi needs µi to be discrete, so SAG
cannot be used for semi-discrete optimal transport. To solve this problem, the average SGD
is adopted which has no requirements on µ[12]. For average SGD, in each step, the average
SGD will obtain the sampling gradients by calculating C?

k
∇vhεapxk,v1q, and by averaging all

existing gradients via v Ð 1
kv

1� k�1
k v, this algorithm can approach the optimal solution of OT

with the convergence rate of Op1{?kq. Finally a numerical illustration is adopted for testing
the effectiveness of average SGD. By comparing the resutls of SAG and SGD for semi-discrete
illustrations, we can conclude that due to the estimation error from discretization of µ, SAG
cannot converges to the correct solution of semi-discrete optimal transport while SGD can
converge to the correct solution of semi-discrete optimal transport[5].

5 Continuous Optimal Transport

For two RKHS H and G defined on X and Y, with kernels κ and ζ, associated with norms
‖.‖H and norms ‖.‖G . Based on the expectations of pDεq, via applying SGD to this problem,
start from u0 � 0 and v0 � 0, we can have

puk, vkq :� puk�1, vk�1q � C?
k
∇fεpxk, yk, uk�1, vk�1q P H� G

Proposition 5.1. The puk, vkq defined above satisfy

puk, vkq :�
ķ

i�1

αipκp., xiq, ζp., yiqq, in which αi :� ΠBrp
C?
i
p1�epui�1pxiq � vi�1pyiq � cpxi, yiq

ε
qqq

where pxi, yiqi�1,..,k are samples from µ b ν and ΠBr is the projection on the centered ball of
radius r.

Then, combing with SGD, the kernel SGD for continuous OT can be obtained. In each step,
through sampling xk from µ and yk from ν, we can update uk�1, vk�1 and αk in step k through
the following equation: uk�1pxkq :� °k�1

i�1 αiκpxk, xiq,vk�1pykq :� °k�1
i�1 αiζpyk, yiq,αk :� C?

k
p1�

epuk�1pxkq�vk�1pykq�cpxk,ykq
ε qq. When the terminal condition is reached, the final pαk, xk, ykq can

be obtained. From numerical results, we can find that the convergence of kernel SGD is slow,and
when µ has more mass, the kernel SGD can converge faster, which means the value of u has
the greatest impact in Fε[5].
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