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1 Introduction

Some previous works in image segmentation use mean gray level value to segment image into
homogeneous regions. In textured image segmentation, local histograms are used to extend the
mean value image segmentation model. Statistical based image segmentation uses parametric
models (mean, variance) or empirical distributions combining the Kullback-Leibler divergence.
Later, optimal transport is investigated to compare local 1-dimensional histograms. Then the
Wasserstein distance is proposed to compare global multi-dimensional histograms. The draw-
back of these non-convex active contours methods is the sensitiveness to the initial contour, and
to reduce such dependence on initialization choice, convex formulations are designed to compute
the global distance between histograms.

Yildizoglu(2013) provides a fast algorithm using `1 norm between cumulative histograms. His
work focuses on 1-dimensional global histogram-based segmentation of grayscale images. Swo-
boda(2013) proposes a convex formulation to deal with low dimensional histograms, using sub-
iterations to compute the proximity operator of the Wasserstein distance. Cuturi(2013) provides
the entropic regularization of optimal transport distances for handling accurate discretization
of histograms. Papadakis and Rabin’s work in this paper is related to the work of Cuturi(2016)
that using the Legendre-Fenchel transform of regularized transport cost for image segmentation.

2 Histogram-based Segmentation

Some notations are as following: denote x., .y as the Euclidean inner product and the `2 norm
||.|| “

a

x., .y. Denote A˚ as the conjugate operator of A and satisfies xAx, yy “ xx,A˚yy. 1n
and 0n P Rn are denoted as the n-dimensional vectors of ones and zeros. `p norm is referred

as ||x||p “ p
ř

i |xi|
pq

1
p , and the norm of a linear operator A is ||A|| “ sup||x||“1||Ax||. Id stands

for the identity operator and the identity matrix Idn “ diagp1nq, while the operator diagpxq
stands for a square matrix whose diagonal is x. A histogram with n bins is a vector h P Rn`
with non-negative entries. The set Sm,n :“

 

x P Rn`, xx,1ny “ m
(

is the simplex of histogram
vectors of total mass m, therefore S1,n is the n-dimensional discrete probability simplex of Rn.
The Kronecker δ symbol is δi,j “ 1 if i “ j, and δi,j “ 0 otherwise. The operators Prox and
Proj are denoted as the Euclidean proximity and projection operators, such that Proxf pxq “
argminy

1
2 ||y´x||

2`fpxq and ProjSpxq “ argminyPS ||y´x|| “ ProxXS pxq. The indicator and

characteristic functions of a set S are: 1Spxq “
"

1 ifx P S
0 otherwise

, ιSpxq “

"

0 ifx P S
8 otherwise

.
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First lets consider the global histogram-based binary segmentation between two parts of a
greyscale image. Let Ω be the N-pixel image domain, note N as the size of Ω (N = |Ω|).
Let I : Ω ÞÑ Λ Ă Rd be the image. h0 and h1 are two given reference histograms with
ř

λPΛ h
ipλq “ 1, i “ 0, 1. the author defines the binary segmentation represented by u : Ω ÞÑ

t0, 1u, saying that the histogram on Ω0 :“ tx P Ω, upxq “ 0u is close to h0 and the histogram
on Ω1 :“ tx P Ω, upxq “ 1u is close to h1. Then compute the histogram on the region Ω1 by:

hupλq “
1

|Ω1|

ÿ

xPΩ

upxq1I“λpxq “
1

ř

xPΩ upxq

ÿ

xPΩ

upxq1I“λpxq (1)

A metric between histograms and a norm ||.|| on RΛ is needed to solve the segmentation problem.
The total variation regularization is considered to determine the interface length between two
partitions. Therefore, the image is segmented by minimizing the following non-convex energy
over the set t0, 1uN :

Jpuq “ TV puq ` ||phu ´ h
1qλPΛ|| ` ||ph1´u ´ h

0qλPΛ|| (2)

where TV puq is the total variation norm of the binary image u, relating to the perimeter of
Ω1 :“ tx P Ω, upxq “ 1u. To handle the problem of energy minimization, some relaxations and
reformulations are needed. The first step of relaxation is using a weight function (probability
map) as a segmentation variable u : Ω ÞÑ r0, 1s. Therefore, a threshold can be applied to seg-
ment the image by Ωtpuq :“ tx P Ω|upxq ě tu.

In order to define a convex model, the data term is reformulated to compare histograms:

||hu ´ h
1|| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

1
ř

Ω upxq

ÿ

Ω

upxq1I“λpxq ´ h1pλq

¸

λPΛ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
ř

Ω upxq

˜

ÿ

Ω

upxq1I“λpxq ´

˜

ÿ

Ω

upxq

¸

h1pλq

¸

λPΛ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(3)

If assume that |Ω1| “
ř

Ω upxq is known, then the distance is obtained:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ÿ

Ω

upxqpp1qI“λpxq ´ h
1pλqq

¸

λPΛ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(4)

Notice that the distance is convex in u. A weighting factor β P r0, 1s is needed to balance the

data term of two partitions after normalizations, such that the ratio β “
ř

Ω upxq
|Ω| “

|Ω1|

|Ω| .

Denoting g1
λpxq :“ 1I“λpxq ´ h1pλq, and g0

λpxq :“ 1I“λpxq ´ h0pλq, observe the final convex
model as:

Jpuq “ TV puq `
1

β
||pxu, g1

λyΩqλPΛ|| `
1

1´ λ
||px1´ u, g0

λyΩqλPΛ|| (5)

The rest is choosing the optimal transport distance to compare histograms.

Now lets consider I : x P Ω ÞÑ Ipxq P Rd as a color image, then a feature image FIpxq P Rn is
introduced to rewrite the equation (1):

hpuq : y P Rn ÞÑ
1

ř

xPΩ upxq

ÿ

xPΩ

upxqδFIpxqpyq (6)

where hpuq is the empirical discrete probability distribution of features FI using the binary
map u, and F is the feature-transform of n-dimensional descriptors. By introducing the feature
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image, denote HXpuq as the quantized, non-normalized, and weighted feature histogram, with
the relaxed variable u : Ω ÞÑ r0, 1s and the feature set X “ tXi P Rnu1ďiďMX

, HXpuq write as:

pHXpuqqi “
ÿ

xPΩ

upxq1CXpiqpFIpxqq, @i P t1, ...MXu (7)

denoting that i as a bin index of MX bins, Xi as the centroid of the corresponding bin, and
CXpiq Ă Rn as the corresponding set of features. So the HX can be rewrite as a linear operator:

HX : u P RN ÞÑ 1Xu P RMX , with1Xpi, jq :“ 1 if FIpjq P CXpiq, 0 otherwise (8)

Notice that 1X P RMXˆN indicates which pixels of FI contribute to bin index i of the histogram
HX . Therefore, xHXpuq,1Xy “

ř

xPΩ upxq “ xu,1Ny, so that HXpuq P SMX ,xu,1y. Now rewrite
equation (5) to find the minimum of segmentation energy using `1 distance:

Jpuq “ ρTV puq `
1

β
||axu,1Ny ´HAu||1 `

1

N ´ γ
||bx1N ´ u,1Ny ´HBp1N ´ uq||1 (9)

Considering the discrete probability segmentation map, the problem can be constrained as:

minuPr0,1sNJpuq “ minuPRN
!

Jpuq :“ Jpuq ` ιr0,1sN puq
)

(10)

3 Monge-Kantorovitch distance

Let a, b be a pair of histograms such that a P SMa,k and b P SMb,k, consider the Monge-
Kantorovitch optimal transport problem as the discrete formulation between a and b. Note
CA,B P RMaˆMb as a fixed assignment cost matrix between the corresponding histogram cen-
troids A “ tAiu1ďiďMa

and B “ tBju1ďjďMb
, defining the sets of admissible histogram and

transport matrices as:

S :“
 

a P RMa , b P RMb |a ą 0, b ą 0 and xa,1May “ xb,1Mb
y
(

(11)

Ppa, bq :“
!

P P RMaˆMb
` , P1Mb

“ a and P T1Ma “ b
)

(12)

Now the optimal transport plan is obtained to minimize the global transport cost, note as:

@pa, bq P S, MKpa, bq :“ minPPPpa,bq

#

xP,Cy “
Ma
ÿ

i“1

Mb
ÿ

j“1

Pi,jCi,j

+

(13)

For readability and the use of duality, it can be reformulated to:

@a, b ,MKpa, bq “ minPPPpa,bqxP,Cy ` ιSpa, bq (14)

4 Sinkhorn distance

The definition of Sinkhorn distance is dM,apr, cq :“ minPPUapr,cqxP,My. By consider an entropic
constraint in optimal transport, Sinkhorn distance provides computational method and restrict
the low cost joint probabilities. Consider the entropy-regularized optimal transport problem on
set S and rewrite the equation (14) as:

MKλpa, bq :“ minPPPpa,bq

"

xP,Cy ´
1

λ
hpP q

*

` ιSpa, bq (15)

It can be read as:

MKλpαq :“ min
PPRMaMb

s.t.pě0,LT p“α

xp, c`
1

λ
logppqy ` ιSpαq (16)

3



As Cuturi(2013) writes the Lagrangian of such problem with β “

„

u
v



to the constraint

LT p “ α, now the respective solution p˚λ and P ˚λ from equation (15) and (16) can be write as:

log p˚λ “ λpLβ ´ cq ´ 1 ô plog P ˚λ qi,j “ λpui ` vi ´ Ci,jq ´ 1 (17)

Sinkhorn proves the alternate normalization of rows and columns of any positive matrix M
converges to a unique bistochastic matrix P “ diagpxqMdiagpyq. Therefore, the solution P ˚λ
can be found by a fixed-point iteration algorithm with setting Mλ “ e´λC :

P ˚λ “ diagpx8qMλdiagpy
8q where xk`1 “

a

Mλyk
and yk`1 “

b

MT
λ x

k
(18)

where a and b are the matrix marginals as desired. Hence, the Sinkhorn distance or the deriva-
tives can be used to design algorithms to compute the regularized optimal transportation.

Considering the set S does not prescribe histogram sums as admissible histograms, the his-
tograms’ total mass can be bounded above by N (N “ |Ω|) by alternative setting:

SďN :“
 

a P RMa , b P RMb |a ą 0, b ą 0, xa,1May “ xb,1Mb
y ď N

(

(19)

A normalized variant of the entropic regularization is proposed as the transport matrix P ˚λ is
not normalized:

hppq :“ Nhp
p

N
q “ ´NKLp

p

N
||1q “ ´xp, log py ` xp,1y logN (20)

5 Co-segmentation

The framework in this work can also be extended to unsupervised co-segmentation in multiple
images. Now considering two images I1 and I2 with respectively domains Ω1 and Ω2. The
image segmentation problem is converted to jointly segment a common object among all the
images without priority. To solve this problem, the goal is to find the largest regions with
similar feature distributions. The model is as following denoting u “ pu1;u2q:

Jpuq :“ ||H1u
1 ´H2u

2||1 `

2
ÿ

k“1

ρTV pukq ´ δ||uk||1 (21)

6 Proposition

Proposition 1 (Cuturi-Doucet). The convex conjugate of MKλpαq reads

MK˚
λpβq “

1

λ
xQλpβq,1y with Qλpβq :“ eλpLβ´cq´1 (22)

Corollary 1. The convex conjugate of the normalized Sinkhorn distance

MKλ,ďN pαq :“ min
pPRMaMb

s.t.pě0,lT p“α

"

xp, c`
1

λ
log p´

logN

λ
1y

*

` ιSďN pαq (23)

reads, using the matrix-valued function Qλp.q ÞÑ eλpL´cq´1 defined in (19)

MK˚
λ,ďN pβq “

"

N
λ xQλpβq,1y ifxQλpβq,1y ď 1
N
λ logxQλpβq,1y `

N
λ ifxQλpβq,1y ě 1

(24)
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