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Abstract

The problem of computing optimal transport distances (OT problems) arises in many
different fields . However, the computational cost for an optimal transport distance becomes
prohibitive once the size of the support of measures exceeds a few hundred. Referring to
[1, 2], this note briefly summarizes the notion of regularization of OT problems and describes
sinkhorn algorithm, which is for fast computation of optimal transportation distances. The
strategy for fast computation is to regularize OT problems by adding an entropic regular-
ization penalty to the original problems.

1 Probability vectors and couplings

Let m,n P N. For any m ˆ n matrix M , let M t be the transpose of M . Also, any vector in
Rn will be understood as an n ˆ 1 matrix. We begin by introducing the notation we will use
throughout this note.

Definition 1.1. Let m,n P N.

(i) Let
ř

n :“ t~a “ pa1, . . . , anq
t P Rn :

řn
i“1 ai “ 1u. We call any ~a P

ř

n a probability
vector.

(ii) For any ~a P
ř

n,
~b P

ř

m, let

Up~a,~bq :“

#

P “ ppijq P Rnˆm : @i P t1, . . . , nu,
m
ÿ

j“1

pij “ ai and @j P t1, . . . ,mu,
n
ÿ

i“1

pij “ bj

+

.

In words, the set Up~a,~bq is the set of all couplings between ~a and ~b.

We will regard Up~a,~bq as a subset of the Euclidean space Rnˆm.

Remark 1.2 (Geometric properties of Up~a,~bq). In Definition 1.1 (ii), the subset Up~a,~bq of the
Euclidean space Rnˆm is bounded because for each P “ ppijq P Up~a,~bq, 0 ď pij ď 1. Also, Up~a,~bq

is a convex polytope, which is drawn from the observation that the boundary of Up~a,~bq is the
solution set of a system of linear equations and whenever P,Q P Up~a,~bq, p1´ tqP ` tQ P Up~a,~bq
for any t P r0, 1s.

2 Kantorvich’s OT problem

We review the notion of Kantorvich’s OT problem and then discuss the two drawbacks in
making use of Kantorvich’s OT problem in practice.
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Kantorvich’s OT problem. Let n,m P N. Fix certain probability vectors ~a P
ř

n and
~b P

ř

m. Also, fix any matrix C “ pcijq P Rnˆm
` , which we call a cost matrix. Define

LCp~a,~bq :“ min
PPUp~a,~bq

xC,P y, (1)

where xC,P y “
ř

i,j pijcij . The problem of calculating LCp~a,~bq is said to be a Kantorvich’s OT

problem. A optimal solution to (1) (i.e. a minimizer P P Up~a,~bq) always exists. Moreover,
equation (1) has multiple optimal solutions in general.

There are two issues that hinder the applicability of Kantorvich’s OT problem:

(i) High computational cost. The cost of computing LCp~a,~bq can run to Opn3 log nq
when ~a,~b P

ř

n . This means that computing a single distance between a pair of measures
supported by a few hundred points in a metric space can take more than a few seconds
on a single CPU.

(ii) Deficiency of Randomness. Since the function P ÞÑ xC,P y defined on Up~a,~bq is linear,
the optimal solutions to (1) are obtained on the boundary of Up~a,~bq Ă Rnˆm . This
implies that any optimal P P Up~a,~bq is sparse matrix.1 From a probabilistic perspective,
such coupling P is quasi-deterministic joint probability since if pij ą 0 for some i, j,
then very few probabilities pij1 for j ‰ j1 will be non-zero in general. This deficiency of
randomness in P results in the failure of traffic pattern prediction: Actual traffic patterns
in a network do not agree with those predicted by the solution of the optimal transport
problem. Indeed, actual traffic patterns are more diffuse than those obtained from solving
the OT problem, which tend to rely on a few routes as a result of the sparsity of optimal
couplings to the solution of (1).

3 Entropy of measures (or histograms)

Let ~a P
ř

n and ~b P
ř

m . For any P “ ppijq P Up~a,~bq Ă Rnˆm
` , the entropy of P is defined by

HpP q :“ ´
ÿ

ij

pij log pij .

Also, the entropy a probability vector is defined in a similar way. Namely, for any ~a P
ř

n,
Hp~aq :“ ´

ř

i ai log ai. The entropy measures “unpredictability”, so the more uniformly dis-
tributed a probability vector ~a P

ř

n is, the larger its entropy Hp~aq is.

Remark 3.1 (About entropy). Fix ~a P
ř

n and ~b P
ř

m.

(i) ~a~bt “ paibjq P Up~a,~bq. Specifically, ~a~bt is the joint probability between two independent

random variables with the distributions ~a and ~b.

(ii) The map H : Up~a,~bq Ñ R` is strongly 1-concave: It is not difficult to check that
B2

Bp2ij
HpP q “ ´ 1

pij
. Hence the Hessian matrix B2HpP q, which is ppnmq ˆ pnmqq-matrix, is

less than or equal to ´I “ p´δijq1ďi,jďnm component-wise.

(iii) For any P P Up~a,~bq, it holds that 1
2

´

Hp~aq `Hp~bq
¯

ď HpP q ď Hp~aq`Hp~bq. In particular,

when P “ ~a~bt, the second inequality can be replaced by the equality.

1When n “ m, any optimal P can contain only up to 2n ´ 1 nonzero components ([1, 3]).
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4 Regularized OT problem

We regularize Kantorvich’s OT problem (1) by adding the entropic term as follows: Fix any
cost matrix C “ pcijq P Rnˆm

` . For ε ě 0, define

LεCp~a,
~bq :“ min

PPUp~a,~bq
pxC,P y ´ εHpP qq . (2)

The problem defined in equation (2) is said to be regularized OT problem. From (2), observe the
following: on the RHS, xC,P y is linear with respect to P , whereas ´εHpP q is strongly convex
with respect to P by Remark 3.1 (ii). Therefore, the map Fε : Up~a,~bq Ñ R defined by

P ÞÑ xC,P y ´ εHpP q

is strongly convex. Invoking that Up~a,~bq is a convex region in Rnˆm, the strong convexity of the
map Fε implies that the minimizer of Fε exists and is unique in Up~a,~bq. Therefore, equation (2)
has a unique solution. Also, observe that qualified candidates P P Up~a,~bq as the minimizers of
equation (2) should not only make xC,P y small but also HpP q large. In particular, taking into
account the entropy HpP q in solving (2) indicates that one can circumvent issue (ii) Deficiency
of Randomness in Section 2 by solving the regularized OT problem (2) instead of (1).

Remark 4.1. For the map Fε : Up~a,~bq Ñ R above, observe the following.

(i) As ε increases, couplings P P Up~a,~bq of large entropy are preferred in minimizing Fε.

(ii) As ε decreases, couplings P P Up~a,~bq optimizing the transportation cost xC,P y are pre-
ferred.

The following proposition precisely describes the behavior of the unique minimizer Pε of Fε
with respect to ε.

Proposition 4.2 (Convergence with ε [2, Proposition 4.1]). For ε ą 0, let Pε P Up~a,~bq be the
unique minimizer of the map Fε.

(i) As ε Ñ 8, Pε converges to ~a~bt, which has the maximal entropy amongst the elements in
Up~a,~bq.

(ii) As ε Œ 0, Pε converges to the solution of equation (1) with maximal entropy within the
set of all solutions of equation (1).

5 Sinkhorn’s matrix scaling algorithm

Given any matrix K “ pkijq, let eK :“ pekij q. Also, given any vector ~u “ pu1, . . . , unq
t P Rn,

let diagp~uq :“ puiδijq1ďi,jďn. The following proposition is crucial for establishing the sinkhorn
algorithm for computing the solution to (2).

Proposition 5.1 ([2, Proposition 4.3]). The unique solution Pε P Up~a,~bq to (2) has the form

Pε “ diagp~uq ¨Kε ¨ diagp~vq (3)

for two (unknown) vectors ~u P Rn
`, ~v P Rm, where Kε :“ e´

1
ε
C .

By virtue of Proposition 5.1, in order to solve equation (2), it suffices to find ~u and ~v that
solve equation (3). Before introducing the sinkhorn algorithm, we begin by introducing the
notation.

For any n P N, let 1n be the column vector with n rows consisting solely of 1. Also, given
any two vectors ~α, ~β P Rn, let ~αd ~β be the vector of the same size obtained by component-wise
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multiplication. Assuming ~β does not contain zero, the vector ~α
~β

is defined by component-wise

division of ~α by ~β.
Let Pε P Up~a,~bq be the unique solution to (2). Since Pε P Up~a,~bq, we have Pε1m “ ~a and

P tε1n “
~b. Then by equation (3), we have

rdiagp~uq ¨K ¨ diagp~vqs1m “ ~a, rdiagp~uq ¨K ¨ diagp~vqst1n “ ~b.

Observing that diagp~vq ¨ 1m “ ~v, one can simplify the first equation above into ~u d K~v “ ~a.
Similarly, the second equation above is turned into ~v dKt~u “ ~b. Therefore, any vectors ~u and
~v satisfying equation (3) must satisfy the following equation system:

#

~udK~v “ ~a,

~v dKt~u “ ~b.
(4)

Now we introduce the sinkhorn algorithm. Initialize an arbitrary vector ~vp0q P Rm
` consist-

ing solely of strictly positive entries. The following recurrence formula defines the Sinkhorn’s
algorithm: for l P N,

p~uqpl`1q :“
~a

K~vplq
, p~vql`1 :“

~b

Ktp~uql`1
.

The sequence of vectors obtained by the iteration process converges to the vectors ~u and ~v

that solve equation (3). In other words, as l increases, P
plq
ε :“ diagp~uplqq¨Kε ¨diagp~vplqq converges

to the unique solution Pε of equation (2).

Remark 5.2 (Computational complexity [2, Remark 4.5]). Assume that n “ m P N. Then, in
order to find a coupling P̂ P Up~a,~bq such that xP̂ , Cy ď LCp~a,~bq` τ , one needs Opn2 logpnqτ´3q
operations.

We finish this note by summarizing the methods and results of computational experiments
carried out in [1].

• They test the performance of the sinkhorn algorithm on the MNIST digits dataset. Each
image in the MNIST digits dataset is converted into a vector of intensities on the 20ˆ 20
pixel grid, which are then normalized to sum to 1. The cost matrix C “ pcijq is the
400ˆ 400 matrix, where cij is the Euclidean distance between the i-th bean and the j-th

bean in the pixel grid. It turns out that for small ε and for images ~a and ~b in the dataset,
Lεcp~a,

~bq approximates Lcp~a,~bq with a high accuracy: Let Pε denote the unique solution to
equation (2) and let P˚ denote any solution to (1). According the their experiments,

xC,Pεy ´ xC,P˚y

xC,P˚y
“

#

3.4%, ε “ 0.02

1.2%, ε “ 0.01,

in terms of the median over 402 pairs of images from the MNIST database. Pε above is

actually P
plq
ε “ diagp~uplqq ¨Kε ¨ diagp~vplqq where l is the minimum value such that

ˇ

ˇ

ˇ

ˇ

ˇ

xC,P
plq
ε y

xC,P
pl´1q
ε y

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď 10´4.

• They also compare the computational speed of calculating (1) and (2) with random cost
matrices. Computing (2) is much more faster in general. One example is the following:
Let ε “ 0.02. For some probability vectors ~a and ~b with 2048 bins, computing LCp~a,~bq
takes about 100 seconds, whereas 1 second is enough for obtaining LεCp~a,

~bq.
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• As ε decreases down to 0, more iterations are necessary. However, the necessary number
of iterations is not much affected by the dimension of the probability vectors ~a,~b that are
compared. This makes the difference of the cost computing LCp~a,~bq and LεCp~a,

~bq stark

as the dimensions of ~a,~b increase.

References

[1] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation
distances. https://arxiv.org/pdf/1306.0895.pdf.
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