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1 Motivation

To understand physical and biological phenomena (e.g. speciation, evolutionary adaption, etc.),
one can quantifying the similarity or dissimilarity of objects affected by the phenomena. One
approach is to match landmarks between objects. In standard morphologists’ practice, 10 to
100 points will be identified as landmarks. By comparing these landmarks, similarity and dis-
similarity between patterns of shapes can be determined. However, the difficulty in acquiring
personal knowledge of morphological evidence limits our understanding of the evolutionary sig-
nificance of morphological diversity. The purpose of this paper is to develop an automatic tool
to decide similarity or dissimilarity between objects, and hence, provides more insights on the
phenomenon.

By tools in geometry, the authors map 3-D scans of body parts into a 2-D space, therefore,
reduce the complexity of processing the objects.

2 Definitions

Definition 1 Given two 2-dimensional smooth surfaces S,S 1, a map ϕ : S Ñ S 1 is conformal
if for any s P S and for any curves Γ1,Γ2 on S that intersects at s, the angle given by the
tangent lines `1, `2 is the same as the angle given by tangent lines `11, `

1
2 of curves ϕpΓ1q, ϕpΓ2q

on S 1.

Definition 2 A disk-preserving Möbius transformation is a conformal bijective automorphism
on D2.

Remark 1 If ϕ is conformal, then ϕ´1 is also conformal.

Remark 2 Suppose the surfaces S,S 1 are smooth and has boundaries. By Riemann’s uni-
formization theorem, S,S 1 can be conformally mapped to 2-disk D2. Since both conformal map
and Möbius transformation preserve angles, for any conformal maps ϕ : S Ñ D2, ϕ1 : S 1 Ñ D2

and a Möbius transformation m, the composition ϕ1´1 ˝m˝ϕ is a conformal map between S,S 1.

Remark 3 A disk-preserving Möbius transformation has a closed-form formula mpzq “ eiθ z´α1´zᾱ ,
where θ P r0, 2πq, |α| ă 1

Definition 3 A Riemannian metric on M is a family of positive definite inner products gp :
TpM ˆ TpM Ñ R for p P M such that for all differentiable vector fields X,Y on M , p ÞÑ
gppXppq, Y ppqq.
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Definition 4 Two Riemannian metrics g and h on a smooth manifold M are called conformally
equivalent if g “ fh for some positive function f on M. The function f is called the conformal
factor.

Remark 4 Conformal factor measures area distortion of a conformal map. Moreover, let g be
an Riemannian metric. A differomorphism f : M Ñ N between two Riemannian manifolds is
an isometry if for all p PM and for all u, v P TpM , gppu, vq “ gfppqpdfppuq, dfppvqq.

Definition 5
dηpx, yq “ r1´ px2 ` y2qs´2dxdy

is the hyperbolic measure.

Remark 5 Then given a conformal factor fpx, yq, we let fpx, yq “
“

1´
`

x2 ` y2
˘‰

fpx, yq.

Definition 6 Let µ be a probabilty measure, and τ be a differentiable bijection from D2 to itself,
the mass distribution µ1 “ τ˚µ defined by µpuq “ µ1pτpuqqJτ puq where Jτ is the Jacobian of τ
is the transportation (or push-forward) of µ by τ .

Remark 6 τ˚µ “ µ ˝ τ´1.

Remark 7 Note that for any (well-behaved) function F on D2,
ş

D2 F puqµ
1puqdu “

ş

D2 F pτpuqqµpuqdu.

Definition 7 The total transport effort ετ “
ş

D2 dpu, τpuqqµpuqdu where dpu, vq is the distance
between u, v in D2.

By infimizing ετ over all measurable bijections τ from D2 to itself, we solve the Monge problem.
Alternatively, since the bijections are hard to search, consider the Kantorovitch problem, i.e.

Definition 8 for all continuous functions F,G on D2, let π be a coupling with marginals µ, ν
satisfying that

ş

D2ˆD2 F puqdπpu, vq “
ş

D2 F puqµpuqdu and
ş

D2ˆD2 Gpvqdπpu, vq “
ş

D2 Gpvqνpvqdv,
we find the Wasserstein distance as

dW “ inf
π

ż

D2ˆD2

dpu, vqdπpu, vq

3 Distances

3.1 Conformal Wasserstein distances (cW)

Instead of comparing two surfaces S,S 1, one can compare two conformal factors f , f 1 obtained
by conformally flattening S,S 1. Let m be a disk-preserving Möbius transformation, then f and
m˚f “ f ˝m´1 are both conformal factors for S.
Then we define the conformal Wasserstein distance to be

DcW pS,S 1q “ inf
mPM

„

inf
πP

ś

pm˚f ,f 1q

ż

D2ˆD2

d̃pz, z1qdπpz, z1q



, where d̃p¨, ¨q is the hyperbolic distance on D2.

Remark 8 DcW is a metric.

Remark 9 This is similar to the Wasserstein distance computed by infimizing over rigid mo-
tions between two shapes. Instead of rigid motions, we consider Möbius transformations since
they conserve conformality.
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Remark 10 However, computing DcW involves solving a Kantorovitch problem for every m.

To reduce the complexity of computing cW, we consider the following distance.

3.2 Conformal Wasserstein neighborhood dissimlarity distance (cWn)

We quantify how dissimilar the ”landscapes” are with a measure of neighborhood dissimilarity.
Let Np0, Rq be a neighborhood at 0, i.e., Np0, Rq “ tz; |z| ă Ru.
For any m PM s.t. z “ mp0q, Npz,Rq is the image of Np0, Rq under m.
Then we define the dissimilarity between f at z and f 1 at z1 by

dRf ,f 1pz, z
1q “ inf

mPM,mpzq“z1

«

ż

Npz,Rq
|fpwq ´ f 1pmpwqq|dηpwq

ff

We defined the dissimilarity between f at z and f 1 at z1 by

dRf ,f 1pz, z
1q “ inf

mPM,mpzq“z1

«

ż

Npz,Rq
|fpwq ´ fpmpwqq|dηpwq

ff

The conformal Wasserstein neighborhood dissimilarity distance between f and f 1 is

DR
cWnpS,S 1q “ inf

πP
ś

pf ,f 1q

ż

D2ˆD2

dRf ,f 1pz, z
1qdπpz, z1q

Note that the cost of transport is given by |fpwq ´ f 1pmpwqq| which measures how two con-
formal maps distort area.

However, both cW and cWn are blind to isometric embedding of a surface in 3D.
Therefore, we will introduce two extrinsic metric.

3.3 Standard Procruste distance

The standard Procrustes distance is between discrete sets of points X “ pXnqn“1,¨¨¨ ,N Ă S and
Y “ pYnqn“1,¨¨¨ ,N Ă S 1 by

dppX,Yq “ min
R rigid motions

»

–

˜

N
ÿ

n“1

|RpXnq ´ Yn|
2

¸1{2
fi

fl

where | ¨ | is the standard Euclidean norm.
Often X and Y are sets of landmarks on two surfaces.

Again, one may find that the standard Procruste distance dp is constructed in a similar fash-
ion to the Wasserstein distance which was infimized over rigid motions. The cost is determined
by how different the sets of landmarks are under isometry mapping.

Remark 11 dppX,Yq depends on choices of the sets of landmarks.

Remark 12 Small number of N landmarks disregards a wealth of geometric data.

Remark 13 Identifying and recording Xn, Yn requires time and expertise.

Thus, we want to introduce a similar distance that does not require a pre-labelled set of
landmarks.
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3.4 Continuous Procruste distance (cP)

Instead, we consider a family of continuous maps a : S Ñ S 1 and use optimization to find
the ”best” a. We require a to be an area-preserving diffeomorphism as a relaxation of being
isometry as in the Procrustes distance.
We denote the set of all area-preserving diffeomorphisms by ApS,S 1q. And let

dpS,S 1, aq2 “ min
R rigid motions

ż

S
|Rpxq ´ apxq|2dAS

.
Then we define the continuous Procrustes distance between S and S’ by

DppS,S 1q “ inf
aPApS,S1q

dpS,S 1, aq.

Since Dp is infimizing over all area-preserving map, it is finding the an area-preserving dif-
feomorphism that is the closest to being an isometry. And since isometry means conformal and
area-preserving, this ”best” map a then is also close to being conformal.

Remark 14 There exists closed from formulas for minimizing over rigid motions. But it is
hard to infimize over ApS,S 1q.

Remark 15 Thus it suffices to only explore a smaller space of maps obtained by small defor-
mations of conformal maps.

3.5 Computation of cP

We modify the search as follows:
Let m P M, then m is a conformal map. Let % be a smooth map that rounghly aligns high
density peaks and χ be a special deformation s.t. χ˝%˝m is area-preserving (up to approximation
error).
For each choice of peaks p, p1 in the conformal factors of S,S 1

1. runs through the 1-parameter family of m that maps p to p1

2. constructs a map % that aligns the other peaks, as best possible

3. conpute dpS,S 1, % ˝mq.

Repeat for all choices of p, p1. Choose % ˝ m s.t. it minimizes d and deform it to be area-
preserving. Then the map a “ χ ˝ % ˝ m is the approximate to correspondance map and
dpS,S 1, aq is the approximate to DppS,S 1q.

4 Experiments

4.1 Setup

There are three independent data sets:

1. 116 second mandibular molars (teeth) of prosimian primates and non-primate close rela-
tives

2. 57 proximal first metatarsals (bones behind big toe) of prosimian primates, New and Old
World monkeys

3. 45 distal radii (bone in forearm) of apes and humans

4



For each shape, geometric morphometricians collected landmarks s.t. the points are biologi-
cally and evolutionarily meaningful. Then one can compute the Procrustes distances with the
landmarks, producing Observer-Determined Landmarks Procrustes (ODLP) distances.
The running times for a pair of surfaces are:

1. cP: „ 20 sec.

2. cWn: „ 5 min.

4.2 Mantel correlation analysis

To quantitatively measure the differences between distance matrices, thye first correlate the
entries in the two square matrices, and then compute the fraction, among all possible relabelings
of the rows/columns for one of them. The table is shown in Figure 1. From the table, one can
see that for all data sets, cP shows a stronger correlation with ODLP. That is, cP is more
silmilar to ODLP. Then we conclude that cP matches ODLP better than cWn.

Figure 1: For all data sets and all correlation coefficients available, the numbers associated with
cP is much larger than the ones associated with cWn.

4.3 Distance matrices

Another way to compare the distance matrices is by observing the distance matrices. In Figure
2, the lower triangular region represents ODLP whereas the upper triangular is either cWn or
cP. Looking at the zoomed-in squares at the bottom of Figure 2, one can see that the squares
taken from cP lookes more symmetric than the squares from cWn. Then again, we can conclude
that cP matches with ODLP better.

4.4 Leave one out

Yet another way of comparing the performances of different distances is by comparing scores
in taxonomic classification. The procedure is done in the following fashion: each sepcimen
(treated as unknown) is assigned to the taxonomic group of its nearest neighbor in the remaning
specimens in the data set (treated as training set). Figure 3 shows the results. Again, one may
observe that in all cases, cP performs better than cWn and produces results that are very close
to the ones by ODLP.
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Figure 2: Note that in the zoomed-in parts, we see that the two squares on the right are more
symmetric than the two squares on the left.

Figure 3: For each data set, No. denotes the number of categories in the specified class; N
denotes number of specimen tested; column cP, Obs.1/2 and cWn shows the success rate of the
leave on out experiment.

5 Conclusion

In terms of runtime and the three experiments shown above, we can conclude that the results
by cP recovers the results produced by using Procrustes distance on morphologists-determined
landmarks better than cWn. And in the leave one out experiment, both ODLP and cP produce
a good rate in recovering taxonomic classification.

6



References

[1] C. Villani. Topics in Optimal Transportation. http://bookstore.ams.org/gsm-58.

[2] https://github.com/rflamary/POT.

[3] Remy Flamary’s webpage. http://remi.flamary.com.

[4] R. Flamary et al. ”Optimal Transport for Domain Adaptation.” http://remi.flamary.

com/biblio/courty2016optimal.pdf. IEEE-TPAMI 2016.

[5] Philip A. Knight. ”The Sinkhorn-Knopp algorithm: convergence.” http://epubs.siam.

org/doi/abs/10.1137/060659624.

[6] O. Bousquet et al. ”From optimal transport to generative modeling: the VEGAN cook-
book” https://arxiv.org/abs/1705.07642.

[7] Marco Cuturi’s webpage. http://marcocuturi.net.

[8] M. Carriere et al.”Sliced Wasserstein Kernel for Persistence Diagrams”.http://
proceedings.mlr.press/v70/carriere17a.html.

[9] M. Cuturi et al. ”Stochastic Optimization for Large-
scale Optimal Transport.” https://papers.nips.cc/paper/

6566-stochastic-optimization-for-large-scale-optimal-transport.

[10] E. Bernton et al. ”Inference in generative models using the Wasserstein distance.” https:

//arxiv.org/abs/1701.05146.

[11] N. Courty et al. ”Learning Wasserstein Embeddings.” https://arxiv.org/pdf/1710.

07457.pdf. NIPS 2017.

[12] Y. Chen et al. ”Optimal Transport for Gaussian Mixture Models.”
LearningWassersteinEmbeddings

[13] Justin Solomon’s webpage. http://people.csail.mit.edu/jsolomon/.

[14] G. Peyre et al. ”Gromov-Wasserstein Averaging of Kernel and Distance Matrices.” https:

//hal.archives-ouvertes.fr/hal-01322992/document.

[15] C. Brecheteau. ”The DTM-signature for a geometric comparison of metric-measure spaces
from samples”. https://arxiv.org/abs/1702.02838

[16] F. Memoli. ”On the use of the Gromov-Hausdorff distance for Shape Comparison”. http:
//sites.fas.harvard.edu/~cs277/papers/gromov.pdf.

[17] Chazal et al. ”Geometric Inference for Measures based on Distance Functions”. https:
//hal.inria.fr/inria-00383685/file/RR-6930v2.pdf.

[18] De Goes et al. ”An Optimal Transport Approach to Robust Reconstruction and Simplifi-
cation of 2D Shapes”. http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.
2011.02033.x/full.

[19] Solomon et al. ”Entropic Metric Alignment for Correspondence Problems”.https://
people.csail.mit.edu/jsolomon/assets/gw.pdf.

[20] Cuturi. ”SINKHORN DISTANCES: LIGHTSPEED COMPUTATION OF OPTIMAL
TRANSPORTATION DISTANCES”. https://arxiv.org/pdf/1306.0895.pdf.

7

http://bookstore.ams.org/gsm-58
https://github.com/rflamary/POT
http://remi.flamary.com
http://remi.flamary.com/biblio/courty2016optimal.pdf
http://remi.flamary.com/biblio/courty2016optimal.pdf
http://epubs.siam.org/doi/abs/10.1137/060659624
http://epubs.siam.org/doi/abs/10.1137/060659624
https://arxiv.org/abs/1705.07642
http://marcocuturi.net
http://proceedings.mlr.press/v70/carriere17a.html
http://proceedings.mlr.press/v70/carriere17a.html
https://papers.nips.cc/paper/6566-stochastic-optimization-for-large-scale-optimal-transport
https://papers.nips.cc/paper/6566-stochastic-optimization-for-large-scale-optimal-transport
https://arxiv.org/abs/1701.05146
https://arxiv.org/abs/1701.05146
https://arxiv.org/pdf/1710.07457.pdf
https://arxiv.org/pdf/1710.07457.pdf
LearningWasserstein Embeddings
http://people.csail.mit.edu/jsolomon/
https://hal.archives-ouvertes.fr/hal-01322992/document
https://hal.archives-ouvertes.fr/hal-01322992/document
https://arxiv.org/abs/1702.02838
http://sites.fas.harvard.edu/~cs277/papers/gromov.pdf
http://sites.fas.harvard.edu/~cs277/papers/gromov.pdf
https://hal.inria.fr/inria-00383685/file/RR-6930v2.pdf
https://hal.inria.fr/inria-00383685/file/RR-6930v2.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.02033.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.02033.x/full
https://people.csail.mit.edu/jsolomon/assets/gw.pdf
https://people.csail.mit.edu/jsolomon/assets/gw.pdf
https://arxiv.org/pdf/1306.0895.pdf


[21] Garcia-Trillos et al. ”ON THE RATE OF CONVERGENCE OF EMPIRICAL MEA-
SURES IN 1-TRANSPORTATION DISTANCE”. https://arxiv.org/pdf/1407.1157.
pdf.

[22] Di Marino et al. ”THE ENTROPIC REGULARIZATION OF THE MONGE PROBLEM
ON THE REAL LINE”. https://arxiv.org/pdf/1703.10457.pdf.

[23] http://marcocuturi.net/dagstuhl.pdf.

8

https://arxiv.org/pdf/1407.1157.pdf
https://arxiv.org/pdf/1407.1157.pdf
https://arxiv.org/pdf/1703.10457.pdf
http://marcocuturi.net/dagstuhl.pdf

	Motivation
	Definitions
	Distances
	Conformal Wasserstein distances (cW)
	Conformal Wasserstein neighborhood dissimlarity distance (cWn)
	Standard Procruste distance
	Continuous Procruste distance (cP)
	Computation of cP

	Experiments
	Setup
	Mantel correlation analysis
	Distance matrices
	Leave one out

	Conclusion

