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Notations

set: calligraphic letters, &

random variables: capital letters, X

random variable values: lower case letters, x
probability distributions: capital letters functions, P(X)

probability density: lower case letters functions, p(x)



(1) VAE and AVEB (b) Optimal transport (primal form) and AAE

L e (Y[X)

Variational auto-encoders (VAE) [2] utilize models Pg of the form (3) and minimize

Dyag(Px, Pc) = Q(zi&f)e QEPX [DkL(Q(Z)X), Pz) — Eqgz)x)llog pa(X|2)] | (5)

Adversarial variational Bayes (AVD) [6]

Davp(Pyx, Pg) = o0 é?;)e JErs |Di,oan(Qe(Z]X), Pz) — Eg,z1x)logpa(X|2)] | . (6)

Adversarial auto-encoders (AAE) [1] replace the Dy, term in (5) with another regularizer:

D Py, Pg) = inf D Pz)—Ep,E lo X\ Z)|. 7
are(Pyx, Pe) oA o aaN(Qz, Pz) — EpyEg(z x)log pa (X | Z)), (7)



Wasserstein Distance

W.(P.Q) := inf E vvyvorle( X, Y)]|.
(P.Q) repx by gy O rle(X,Y)]

Kantorovich-Rubinstein theorem

Wi (P, Q) = sup |[Ex~p[f(X)] — Ey~o[f(Y)]|,
fEFL
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GAN and Wasserstein-GAN

Doax(Px, Pg) = sup Ex.wp, logT(X)] + Ezp, [109,-(1 — T((;(Z)))] (4)
TeT

Dwagan(Px, Pg) = sup Ex~py[T(X)] —Ez.p, |[T(G(Z))],



Decomposition

Formal statement As in Section 2, P(X ~ Px.Y ~ Pg) denotes the set of all joint distri-
butions of (X,Y) with marginals PX_PG and likewise for P(X ~ Px.Z ~ Pgz). The set of all
joint distributions of (X, Y, Z) such that X ~ Py, (Y, Z) ~ Pg 7, and (Y 1L X)|Z will be denoted
by Px.y.z. Finally, we denote by Px y and Px z the sets of marginals on (X.Y) and (X, Z) (re-
spectively) induced by distributions in Pxy z. Note that P(Px, Pg), Pxy.z, and Pxy depend
on the choice of conditional distributions P (Y|Z), while Py z does not. In fact, it is easy to

check that Px z = P(X ~ Px,Z ~ Pz). From the definitions it is clear that Pxy C P(Px, Fg)
and we get the following upper bound:

‘-’1’"¢,(Px, P(,') < ”:(Px Pc;) = PGI%E . ]E(X,Y)NP [C(X* Y)] (9)

If P;(Y|Z) are Dirac measures (i.e., Y = G(Z)), the two sets are actually coincide, thus justifying
the reparametrization (8) and the illustration in Figure [1(b), as demonstrated in the following
theorem:

Theorem 1. If Po(Y|Z = z) = dg(.) for all z € Z, where G: Z — X, we have

W.(Px, Pg) = WI(Px. Pg) = inf Eix gywple(X,G(Z 10
(Px, Fg) '(Px. FPg) pep(x il o EX2) ple(X,G(Z))] (10)
= inf Ep E v (X, G(Z))], 11

0. dnf | EpcEqux)e(X, G(2))] (11)

WX (Px,Pg) = inf Ep Eqzx[c(X,G(Z))] + AF(Q) (12)
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Namely, use any convex penalty F: QQ — R, such that F(Q) = 0 if and only if Pz = @z, and
for any A > 0, consider the following relaxed unconstrained version of W, (Px, Pg):

W2 (Px, Pg) = Q(iglf\,)EPx Egzx)[¢(X,G(2))] + AF(Q) (12)

Remark 1. For X = R and Gaussian Pg(Y|Z) = N(Y:G(Z), a%-1;) the value of W,(Px. Pg) is
upper bounded by Wi (Px, Pg), which coincides with the r.h.s. of (11} up to a d-a? additive term
(see Corollary 7 in Section B.2). In other words, objective (12) coincides with the relaxed version
of W,:' (Px, Pg) up to additive constant, while Dpor corresponds to its adversarial approximation.

One possible choice for F is a convex divergence between the prior Pz and the aggregated
posterior (Qz, such as Djs(Qz, Pz), Dk1.(Qz,Pz), or any other member of the f-divergence
family. However, this results in intractable F. Instead, similarly to AVB, we may utilize the
adversarial approximation Dgan(@z. Pz). which becomes tight in the nonparametric limit. We
thus arrive at the problem of minimizing a penalized optimal transport (POT) objective

Dror(Px.Fe) = inf __EpcEquan [e(X.G2)] + X Daax@z, P2). (13



Dpot & AAE

Proposition 2. Let X = R? and assume c(z,y) = ||x — y||?, Pa(Y|Z2) = N(Y;G(Z),0%-1) with
any function G: X — R. If 0> > 0 then the functions G* and G' minimizing W.(Px. PZ) and

I-"{v"":(P‘,\;,Pg) respectively are different: G, depends on o2, while G7 does not. The function GT is
also a minimizer of W.(Px, P2).

<

Variational auto-encoders (VAE) [2] utilize models Pg of the form (3) and minimize

Dvar(Px. Pg) = inf Ep,. |Dg Z\|X). Py E log pe; (X |Z 5
vaE(Px, Fa) Q(lel‘}\,)eg Py [DkL(Q(Z|X), Pz) — Eqz1x)log pa(X|2)] | (5)

Adversarial auto-encoders (AAE) [1] replace the Dy, term in (5) with another regularizer:

Daane( Py, FPo) = inf  Daoan(Qz, Pz) — Ep,. En7 vy [log pa (X | Z)|.
are(Px, Po) . aaN(Qz, Pz) — EpyEgz x)[log pa(X|Z)], (7)
D " o y — 1 f ]E ’IE 7 - C JY G Z A D 13\
poT(Px, Pg) Q(lel.l\')EQ PxEozx) (Z))] + GanN(@z., Pz), (13)



Dpor & WGAN

Wi (P,Q) = sup |Ex~p[f(X)] — Ey~q[f(Y)]
fEFL

, (2)

Wi(Px,Pg) = inf Ex.pezwgzx) l|X — G(Z)||] =sup Epy [f(X)] - Ep, [f(G(Z))].
Q:Qz=Fz ferFs

Despite the theoretical equivalence of both approaches, practical considerations lead to differ-
ent behaviours and to potentially poor approximations of the real gradients. For example, in the
dual formulation, one usually restricts the witness functions to be smooth, while in the primal
formulation, the constraint on () is only approximately enforced. We will study the effect of these
approximations.
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