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Problem

Given a point set S and considering S as a measure µ consisting of Dirac
masses, find a coarse simplicial complex T such that µ is well
approximated by a linear combination of uniform measures on the edges
and vertices of T .
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Contributions

Optimal transport formulation allows for a unified treatment of noise,
outliers, boundaries and sharp features. None of the previous work could
handle all of these concurrently.
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Preliminaries

Delaunay Triangulation(DT) - Given a point set P, DT (P) is a
triangulation of P such that no point in P lies inside the circumcircle of
any triangle in DT (P). Such a triangulation can be computed in time
O(n log n).
Half-edge - A half-edge is a directed line segment described by an origin
vertex and a destination vertex.
One-ring of a point - The one-ring of a point x in a triangulation T is
the set of all vertices adjacent to x in T .
Kernel of a polygon P - This is a non-empty set K of points in the
interior of P such that there exists a line segment from every point in K to
every other point in P lying entirely inside P.
Flippable edge - An edge e in a triangulation T is called flippable if its
end points and its two opposite vertices form a convex quadrilateral.
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Shape reconstruction algorithm

1 Input - point set S = {p1, . . . , pn}
2 Construct Delaunay triangulation T0 of S.

3 Compute initial transport plan π0 from S to T0.

4 Set k = 0.

5 Repeat steps 6-11 Until desired vertex count is obtained.

6 Pick best half-edge e = (xi , xj) to collapse (simplification).

7 Create Tk+1 by merging xi onto xj .

8 π′k+1 := πk with local reassignments (update transport).

9 Optimize position of vertices in the one-ring of xi (vertex relocation).

10 πk+1 := π′k+1 with local reassignments (update transport).

11 k → k + 1.

12 Filter edges based on relevance (optional).
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Optimal Transport Formulation

Let S = {pi}i∈I denote the input point set. Every point pi is seen as
a Dirac measure µi centered at pi and of mass mi . The point set is
thus considered as a measure µ =

∑
i µi .

Assume that we are given a triangulation T and a point to simplex
assignment which maps every point pi to either an edge e or a vertex
v of T .

Each vertex v of T is seen as a Dirac measure and every edge e is a
uniform 1D measure defined over the edge e.
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Optimal Transport Formulation

For every vertex v of T , let Sv denote the set of points of S assigned
to the vertex v .

For every edge e of T , let Se denote the set of points of S assigned
to the edge e.

Assume these sets are disjoint with ∪v∈T Sv ∪ ∪e∈T Se = S.

Let Mv denote the total mass of Sv and Me denote the total mass of
Se . Then,

∑
e∈T Me +

∑
v∈T Mv =

∑
i mi .

Let π denote the transport plan satisfying the point to simplex
assignment and W2(π) its transport cost.
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Optimal Transport Cost

Points to Vertex - For a vertex v ∈ T , the cost to transport the
measure Sv to the Dirac measure centered on v with mass Mv is
given by

W2(v ,Sv ) =

√∑
pi∈Sv

mi ||pi − v ||2.

Points to Edge - For an edge e, the transport plan is decomposed
into a normal and a tangential component to e. For every pi ∈ Se , let
qi denote the orthogonal projection of pi onto e. The transport cost
N of the normal plan is given by

N(e,Se) =

√∑
pi∈Se

mi ||pi − qi ||2.
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Optimal Transport Cost

The tangential plan is obtained as follows:

The projected points {qi} are sorted along e and the edge is
partitioned into |Se | segment bins, with the i-th bin having length
li = (mi/Me)len(e). Here, len(e) denoted the length of edge e.

Consider a point pi of mass mi that projects onto qi on edge e. Set a
1D coordinate axis along the edge with origin at the center of the i-th
bin and let ci be the coordinate of qi in this coordinate axis. The
tangential cost ti of pi is given by

ti =
Me

len(e)

∫ li/2

−li/2
(x − ci )

2dx = mi

(
l2i
12

+ c2i

)
.
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Optimal Transport Cost

The tangential component of the optimal transport cost for an edge e is
given by

T (e,Se) =

√√√√∑
pi∈Se

mi

(
l2i
12

+ c2i

)
.

Note that the above definition of tangential cost ensures that the
boundaries and features are preserved.
The total cost to transport S to T through the transport plan π is
therefore given by

W2(π) =

√∑
e∈T

[N(e,Se)2 + T (e,Se)2] +
∑
v∈T

W2(v ,Sv )2.
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Point to simplex assignment

Given a triangulation T , an assignment of the point set S to the vertices
and edges of T is given as follows:

Each point pi is first temporarily assigned to the closest edge of the
simplicial complex.

This results into a partition of S into subsets Se .

For every edge e, the points in Se are either kept assigned to e or
every point of Se is assigned to its closest endpoint of e.

The assignment that minimizes the optimal transport cost is chosen.
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Simplification

Collapsing an edge changes a triangulation Tk to a triangulation Tk+1

and thus changes the cost by δk = W2(πk+1)−W2(πk).

Since the goal is to minimize the increase in total cost, edge collapses
are applied in increasing order of δ.

Therefore, all feasible collapses are initially simulated and their
associated δ is added to a dynamic priority queue sorted in increasing
order.

Edge collapse is done by repeatedly popping from the queue the next
edge to collapse, performing the collapse, updating the transport plan
and cost and updating the priority queue.

Note that updating the transport involves only the edges in the
one-ring of the removed vertex and updating the priority queue is
required for edges incident to the modified one ring.
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Collapsing edges

A half-edge is called collapsible if its collpase creates neither overlaps
nor fold-overs in the triangulation.

Every edge is made collapsible by the following procedure: let (xi , xj)
denote the edge we want to collapse. Let Pxi denote the
counter-clockwise oriented polygon formed by the one-ring of xi and
let Kxi denote its kernel. An edge (a, b) ∈ Pxi is blocking xj if the
triangle (xj , a, b) has clockwise orientation.

The edge (a, b) is removed from Pxi by flipping either (a, xi ) or
(b, xi ). Note that one of these edges is flippable.

The flipping of blocking edges is continued until there are no blocking
edges in Pxi .
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Vertex Relocation

The triangulations obtained by edge collapses have their vertices on
the input points. However, the presence of noise and missing data
make interpolated triangulations poorly adapted to recover features.

To overcome this problem, vertex relocation is performed after every
edge collapse.

The square of the normal part of the W2 cost associated with a
vertex v of T is given by∑

pi∈Sv

mi ||pi − v ||2 +
∑

b∈N1(v)

∑
pi∈S(v,b)

mi ||pi − qi ||2.

The optimal position v∗ of v is computed by equating the gradient of
the above expression to zero.
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Edge filtering

The presence of noise and outliers can lead to a few undesirable solid
edges in the triangulation.

Therefore, the solid edges are eliminated based on a notion of
relevance re , given by

re =
Me len(e)2

N(e,Se)2 + T (e,Se)2
.
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