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Given a point set S and considering S as a measure p consisting of Dirac
masses, find a coarse simplicial complex T such that p is well
approximated by a linear combination of uniform measures on the edges
and vertices of 7.



Contributions

Optimal transport formulation allows for a unified treatment of noise,

outliers, boundaries and sharp features. None of the previous work could
handle all of these concurrently.



Preliminaries

Delaunay Triangulation(DT) - Given a point set P, DT(P) is a
triangulation of P such that no point in P lies inside the circumcircle of
any triangle in DT(P). Such a triangulation can be computed in time
O(nlog n).

Half-edge - A half-edge is a directed line segment described by an origin
vertex and a destination vertex.

One-ring of a point - The one-ring of a point x in a triangulation T is
the set of all vertices adjacent to x in 7.

Kernel of a polygon P - This is a non-empty set K of points in the
interior of P such that there exists a line segment from every point in K to
every other point in P lying entirely inside P.

Flippable edge - An edge e in a triangulation 7T is called flippable if its
end points and its two opposite vertices form a convex quadrilateral.



Shape reconstruction algorithm

Input - point set S = {p1,...,pn}

Construct Delaunay triangulation 7p of S.

Compute initial transport plan mg from S to 7.

Set k = 0.

Repeat steps 6-11 Until desired vertex count is obtained.
Pick best half-edge e = (x;, x;) to collapse (simplification).
Create Ty41 by merging x; onto x;.

Tiq1 = Tk With local reassignments (update transport).
Optimize position of vertices in the one-ring of x; (vertex relocation).
Tk41 = T,y With local reassignments (update transport).
k— k+1.

Filter edges based on relevance (optional).
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Optimal Transport Formulation

o Let S = {p;}ics denote the input point set. Every point p; is seen as
a Dirac measure p; centered at p; and of mass m;. The point set is
thus considered as a measure p1 =, ;.

@ Assume that we are given a triangulation 7 and a point to simplex

assignment which maps every point p; to either an edge e or a vertex
vof T.

@ Each vertex v of T is seen as a Dirac measure and every edge e is a
uniform 1D measure defined over the edge e.



Optimal Transport Formulation

@ For every vertex v of T, let S, denote the set of points of S assigned
to the vertex v.

@ For every edge e of T, let S, denote the set of points of S assigned
to the edge e.

@ Assume these sets are disjoint with U,c7S8, U Uee78Se = S.
@ Let M, denote the total mass of S, and M, denote the total mass of
Se. Then, >~ Me 4> cr My =3 m;.

@ Let 7w denote the transport plan satisfying the point to simplex
assignment and Wh(7) its transport cost.



Optimal Transport Cost

@ Points to Vertex - For a vertex v € T, the cost to transport the
measure S, to the Dirac measure centered on v with mass M, is
given by

(v.8) = | > millpi—vl>.

Pi€ESY

@ Points to Edge - For an edge e, the transport plan is decomposed
into a normal and a tangential component to e. For every p; € Se, let
g; denote the orthogonal projection of p; onto e. The transport cost
N of the normal plan is given by

N(e,Se) = | > millpi — qil 2.

piese



Optimal Transport Cost

The tangential plan is obtained as follows:

@ The projected points {g;} are sorted along e and the edge is
partitioned into |Se| segment bins, with the i-th bin having length
li = (mj/Me)len(e). Here, len(e) denoted the length of edge e.

o Consider a point p; of mass m; that projects onto g; on edge e. Set a
1D coordinate axis along the edge with origin at the center of the i-th
bin and let ¢; be the coordinate of g; in this coordinate axis. The
tangential cost t; of p; is given by

M [1/? > ?o,
ti = —G)dx=mj| 5 +¢ ).
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Optimal Transport Cost

The tangential component of the optimal transport cost for an edge e is
given by

/2
_ i ] 2
T(e,Se) = E m,<12—|—ci).

pi€Se

Note that the above definition of tangential cost ensures that the
boundaries and features are preserved.

The total cost to transport S to 7 through the transport plan 7 is
therefore given by

Wa(r) = \/Z[N(e,Se)z +T(e S+ Y Wa(v,S,)2.
ecT veT
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Point to simplex assignment

Given a triangulation 7, an assignment of the point set S to the vertices
and edges of T is given as follows:
@ Each point p; is first temporarily assigned to the closest edge of the
simplicial complex.
@ This results into a partition of S into subsets Se.

@ For every edge e, the points in Se are either kept assigned to e or
every point of S, is assigned to its closest endpoint of e.

@ The assignment that minimizes the optimal transport cost is chosen.
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Shape reconstruction algorithm

Input - point set S = {p1,...,pn}

Construct Delaunay triangulation 7p of S.

Compute initial transport plan mg from S to 7.

Set k = 0.

Repeat steps 6-11 Until desired vertex count is obtained.
Pick best half-edge e = (x;, x;) to collapse (simplification).
Create Ty41 by merging x; onto x;.

Tiq1 = Tk With local reassignments (update transport).
Optimize position of vertices in the one-ring of x; (vertex relocation).
Tk41 = T,y With local reassignments (update transport).
k— k+1.

Filter edges based on relevance (optional).

®Oe60000O00060O0CO0

12 /16



Simplification

@ Collapsing an edge changes a triangulation 7 to a triangulation Tx41
and thus changes the cost by §x = Wa(mgy1) — Wa(mk).

@ Since the goal is to minimize the increase in total cost, edge collapses
are applied in increasing order of §.

@ Therefore, all feasible collapses are initially simulated and their
associated ¢ is added to a dynamic priority queue sorted in increasing
order.

@ Edge collapse is done by repeatedly popping from the queue the next
edge to collapse, performing the collapse, updating the transport plan
and cost and updating the priority queue.

o Note that updating the transport involves only the edges in the
one-ring of the removed vertex and updating the priority queue is
required for edges incident to the modified one ring.
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Collapsing edges

@ A half-edge is called collapsible if its collpase creates neither overlaps
nor fold-overs in the triangulation.

o Every edge is made collapsible by the following procedure: let (x;, x;)
denote the edge we want to collapse. Let P,; denote the
counter-clockwise oriented polygon formed by the one-ring of x; and
let Ky, denote its kernel. An edge (a, b) € Py, is blocking x; if the
triangle (x;, a, b) has clockwise orientation.

@ The edge (a, b) is removed from P by flipping either (a, x;) or
(b, x;). Note that one of these edges is flippable.

@ The flipping of blocking edges is continued until there are no blocking
edges in Py,.
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Vertex Relocation

@ The triangulations obtained by edge collapses have their vertices on
the input points. However, the presence of noise and missing data
make interpolated triangulations poorly adapted to recover features.

@ To overcome this problem, vertex relocation is performed after every
edge collapse.

@ The square of the normal part of the W, cost associated with a
vertex v of T is given by

Yomillpi—vIP+ Yo Y millpi - aill*

pPiESY bENl(V) PiES(v,b)

The optimal position v* of v is computed by equating the gradient of
the above expression to zero.
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Edge filtering

@ The presence of noise and outliers can lead to a few undesirable solid
edges in the triangulation.

@ Therefore, the solid edges are eliminated based on a notion of
relevance re, given by

. Melen(e)?
7 N(e,Se)2 + T(e,Se)?
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