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I Theorem (Brenier’s factorization theorem)

Let Ω ⊂ Rn be a bounded smooth domain and s : Ω→ Rn be a
Borel map which does not map positive volume into zero volume.
Then s uniquely decomposes into the form

s = t ◦ u, where

u : Ω→ Ω is a volume preserving map and

t = ∇ψ : Rn → Rn is the gradient of a convex function

ψ : Rn → R.
I McCann generalizes this result to Riemannian manifolds.

I Question: What is the relation between this and optimal
transport?

I Answer: Proof depends on the solution of
Monge-Kantorovich problem.
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Monge problem

I Let M be a (topological) space and µ, ν be (Borel) measures
on M. Let c : M ×M → [0,∞] be a function (it is called the
cost function.)

I The set of all transport maps from µ to ν is defined as follows:

S(µ, ν) := {G : M → M : G∗(µ) = ν}.

I The cost of a transport map G ∈ S(µ, ν) is defined by

C (G ) =

∫
M
c(x ,G (x))d(µ(x)).

I Monge problem is finding the cost minimizing transport map
G .

I Existence of the solution depends on properties c . In this
presentation we assume that M is a metric space and
c = d2/2.
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Kantorovich problem

I M, µ, ν, c as above. Let p, q : M ×M → M denote the
projection onto the first coordinate and second coordinate
respectively. The set of all transport plans from µ to ν is
defined by

Γ(µ, ν) := {γ a Borel measure on M×M : p∗(γ) = µ, q∗(γ) = ν}.

I The mathematical term for a transport plan is a coupling.

I The cost of a transport plan γ is defined by

C (γ) =

∫
M×M

c(x , y)d(γ(x , y)).

I Kantorovich problems is finding the cost minimizing transport
plan.
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Relation between Monge and Kantarovich Problem

I Kantorovich problem is a relaxation of the Monge problem in
the following sense:
The map S(µ, ν)→ Γ(µ, ν) given by G 7→ (idM × G )∗(µ) is a
cost preserving embedding.

I The image of the map above is the set of measures in Γ(µ, ν)
whose support is a graph.

I Γ(u, v) is a convex subset of a Banach space (i.e. dual space
of the continuous functions (C (M ×M), l∞)). This is helpful
for showing the existence and uniqueness of solutions.
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Existence of Monge solutions, uniqueness of Kantorovich
solutions

Let M be an n-dimensional connected compact Riemannian
manifold, and µ, ν be Borel measures on M. Then there is a
convex potential function ψ : M → R such that

I G(x):= expx(∇ψ) is a transport map.

I G is the only transport map arising this way. It solves
Monge’s problem.

I Kantorovich problem has a unique solution.

I Kantorovich problem is obtained from G .

6 / 9



McCann’s Factorization Theorem

Let M be a connected compact Riemannian manifold. Let
s : M → M be a Borel map which never maps positive volume into
zero volume. Then s factors uniquely into the form s = t ◦u, where

u : M → M is a volume preserving map and

t = exp(∇ψ) : M → M

where ψ is a convex function ψ : M → R.
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Idea of Proof

I Let µ be the Riemanniam volume measure on M and let
ν = s∗(µ).

I Let t be the solution of the Monge problem S(µ, ν) arising
from the potential ψ : M → R.

I Let t∗ be the solution of the Monge problem S(ν, µ). Show
that t, t∗ are inverses almost everywhere. Let u = t∗ ◦ s.

I Then t ◦ u = s, µ almost everywhere. Furthermore
u∗(µ) = t∗∗ s∗(µ) = t∗∗ (ν) = µ, hence u is measure preserving.
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