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@ We introduce three generalized notions of the Ricci curvature.

@ We argue that these curvatures and robustness of networks are
positively correlated. So one can measure robustness of a network by
computing its curvatures.

@ We test our hypothesis by computing curvatures of cancer networks
and get compatible results.



Ricci curvature and entropy

@ The Ricci curvature tensor on a Riemannian manifold (M, g) provides
a way of measuring the degree to which the geometry determined by
a given Riemannian metric might differ from that of ordinary

Euclidean space.

Elliptic Euclidean Hyperbolic

Figure: Pictures of positive, zero, negative curvatures



Ricci curvature and entropy

@ For the measure 1 on a Riemannian manifold (M, g), the Boltzmann
entropy is defined as follows:

Ent(u) := —/MplogpdvolM,

where vol is the standard Riemannian measure and p = du/dvolp.

@ It measures how much “uniform” the measure is. To get intuition,
compute for finite spaces.



Ricci curvature and entropy

@ A metric space (X, dx) is a compact length space iff
P>(X) := (P(X), W) is a compact length space [LV09, Stu06].

@ Lott, Sturm and Villani discovered following connection between Ricci
curvature and entropy [LV09, Stu06].

e Ricp(v) > kl|v|? for any v € TM if and only if

t(1—t)
2

Ent(ue) > (1 — t) Ent(uo) + t Ent(u1) + k Wa (o, 1),

where (11t)o<t<1 is the 2-Wasserstein geodesics between (9 and fi1.

@ This inequality indicates the positive correlation between entropy and
curvature.
AEnt x ARic > 0.



Entropy and robustness

@ The robustness of a network (here, a positively weighted finite graph
without direction) is the ability to remain functional in the face of
random perturbations [DMO05, PMT17].

@ In many cases, robustness is measured empirically.
e Example) Experimental perturbation studies in yeast cells [HMJ"00].

e Example) Computational analysis of network observables under node
deletion [AJBO0O].

e In [DGO04, DMO05], the authors argued that the entropy and the
robustness of networks are positively correlated by invoking theory of
large deviations and suggesting some computational results.

AEnt x AR > 0.



Robustness and Ricci curvature

@ Hence, in [TSZ*15, PMT17], the authors argue that the curvature
and the robustness of networks are positively correlated.

AR x ARic > 0.

@ BUT, what is notion of curvature for networks?



Three generalized notions of curvature

There are three candidates for generalized version of the Ricci curvature.
All of them are applicable to networks.

@ Ollivier-Ricci curvature are defined for metric spaces with Markov
chain structure, or metric measure spaces. For networks, we will get
curvature value kor(x,y) € R for each edge xy.

o Bakry-Emery Ricci curvature are defined for graphs. We will get
curvature value kgggr(x) € R for each vertice x.

@ Forman-Ricci curvature are defined for CW-complexes. For
networks, we will get curvature value keg(e) € R for each edge e.



Curvatures on cell complexes

o It is already known that the normal gene interaction networks are less
robust than their cancerous analogues [DM05, WBST12].

@ To check the validity of the claim, the curvature and the robustness
are positively correlated, the authors computed three curvatures for
cell complexes.

@ We will consider seven kinds of cancer types. Breast, Head/Neck,
Kidney, Liver, Lung, Prostate and Thyroid cancers. For each cancer
type, the authors used normal tissue and cancerous tissue data from
3000 samples.

@ Then, we will have networks, depending on types and
normal/cancerous. Vertices of the networks consist of 500 cancer
related genes. Edges are weighted by correlation values of
gene-to-gene expressions.

@ Expression value of a gene measures activity of the gene.



Curvatures on cell complexes

Cancer Type A Av- | A Av- | A Av-
erage | erage | erage
OR BER | FR
Cur- Cur- Curvatpire
va- va-
ture ture
Breast Carcinoma 0.012 | 0.182 | 13.022
Head/Neck Carci- || 0.004 | 0.116 | 9.100
noma
Kidney Carcinoma || 0.010 | 0.217 | 7.711
Liver Carcinoma 0.008 | 0.227 | 3.136
Lung Adenocarci- || 0.013 | 0.320 | 7.898
noma
Prostate Adenocar- || 0.009 | 0.179 | 7.368
cinoma
Thyroid Carcinoma || 0.006 | 0.133 | 2.969

Table 1: All seven cancer networks have a higher average Ricci Curvature than the complementary normal
networks.



Curvatures on cell complexes

Gene || Gene A Gene B A OR
Rank- Curvature
ing (Cancer-
Normal)
1 RNF43 RSPO3 0.3504
2 RNF43 RSPO2 0.3444
3 ERG ETV1 0.3012
4 GPC3 PTCHI 0.3001
5 SDC4 GPC3 0.2901
6 POT1 SBDS 0.2796
7 FGFR2 KDR 0.2538
8 ERG FOXA1 0.2460
9 SDC4 EXT1 0.2410
10 MYC SDHD 0.2408
11 TALI1 RUNX1 0.2167
12 SDC4 EXT2 0.2165
13 NUP214 ELN 0.2132
14 TALI1 TCF3 0.2123
15 PDGFB COL2A1 0.2036
16 IDH1 IDH2 0.2012
17 SDHB HMGA1 0.2007
18 TALI1 TRIM27 0.1929
19 EPSI15 MLLT4 0.1909
20 FUBP1 PICALM 0.1899

Table 3: The top 20 pairs of genes with respect to Olivier-Ricci curvature.



Curvatures on cell complexes

Gene || Gene A BER || Gene Gene A BER
Rank- Curvature Rank- Curvature
ing (Cancer- ing (Cancer-
Normal) Normal)
1 PICALM 7.4910 21 PDGFRB 2.8796
2 CLTCL1 4.9102 22 JAK2 2.7667
3 EPSI15 4.3210 23 RPN1 2.6685
4 KIF5B 4.1284 24 DCTN 2.4304
5 CLTC 4.0657 25 TBLIXR1 2.3959
6 PTPNI11 4.0465 26 ABLI1 2.3943
7 YWHAE 3.8416 27 PIM1 2.3879
8 EGFR 3.8357 28 PBRM1 2.3454
9 JAK1 3.7590 29 TFRC 2.3162
10 MSN 3.6079 30 NDRG1 2.2251
11 CDC73 3.5274 31 LCK 2.1788
12 PIK3CA 3.4499 32 KIT 2.1602
13 XPO1 3.4274 33 FGFR1 2.1367
14 ALDH2 3.3854 34 STATSB 2.0506
15 SDHB 3.2626 35 ERG 2.0441
16 GNAS 3.1372 36 KDR 2.0387
17 AKT1 3.1279 37 PPARG 2.0034
18 MAP2K1 3.0754 38 SYK 1.9919
19 CBL 3.0287 39 HIP1 1.9897
20 PML 3.0043 40 CUX1 1.9819

Table 4: The top 40 genes with respect to local BER curvature.



Curvatures on cell complexes

Gene || Gene A Gene B A FR
Rank- Curvature
ing (Cancer-
Normal)
1 CARS ALDH2 256.904
2 NDRGI ARNT 252.955
3 ALDH2 SDHB 239.857
4 CLTCL1 ALDH2 227.896
5 ALDH2 KIF5B 219.595
6 EBF1 CEBPA 218.589
7 CLTCL1 SDHB 212.586
8 CEBPA PPARG 209.869
9 PTPN11 PTPRB 208.132
10 ALDH2 IDH1 198.918
11 EPS15 SDHB 195.605
12 CDHI1 FUS 193.463
13 SDHB PTPN11 191.581
14 JAK1 AKT2 191.086
15 ELF4 ERG 188.118
16 AKT2 PIK3CA 187.711
17 NONO RUNX1 186.994
18 HMGA1 RARA 186.925
19 CLTCL1 HIP1 186.329
20 ERBB2 ATPIAL 185.469

Table 5: The top 20 pairs of genes with respect to FR curvature.



Curvatures on cell complexes

@ In Table 1, all three generalized curvatures have higher values in the
seven cancer networks to the normal ones. Hence, the result is
consistent with the authors’ hypothesis.

@ Table 3,4 and 5 shows top ranked genes in breast cancer. It shows,
what kinds of genes are most contributing for “robustness” of the cell
complexes.

@ There are three genes, SDHB, EPS15, and ERG found among the top
ranked genes with respect to all three FR, BER and OR curvatures.

@ There are some similarities between the top ranked genes with respect
to FR curvature and BER curvature, namely, ALDH2, NDRG,
CLTCL1, KIF5B, PPARG, PTPN11, JAK1, PIK3CA, SDHB, EPS15,
ERG, and HIP.

@ There are some similarities between the top ranked genes with respect
to FR curvature and OR curvature, namely IDH1, RUNX1, HMGAL,
SDHB, EPS15, and ERG.



Curvatures on cell complexes

@ A number of genes have known clinical implications with regards to
breast cancer. For example, EPS15 plays a crucial role in the
degradation of growth factor receptions. It is reported that
over-expression of EPS15 is significantly associated with a favorable
clinical outcome.

@ SDHB gene is another known tumor suppressor.

@ BUT, there are some important cancer-related gene mutations known
to play a significant role in breast cancer such as BRCA1 and BRCA2
which are not ranked among the top ranked genes.



Ollivier-Ricci curvature, details

[vRS05] For any compact connected Riemannian manifold M and k € R,
the following properties are equivalent:

@ Ricpy(v) > k||v||? for any v € TM

@ The normalized Riemannian uniform distribution on balls
my r(A) == voly (AN B(x,r))/volpm(B(x, r))
satisfies the asymptotic estimate

Wi(myyx, my ) < (1 - 2(,7—/:_2)# + o(r2)) ~dm(x,y)

where the error term is uniform with respect to x,y € M.

v

In particular, if kK > 0, small balls are closer in transportation distance than
their centers are.



Ollivier-Ricci curvature, details

Definition (Ollivier-Ricci curvature)

[O1109] Let (X, dx) be a metric space with a Markov chain myx. Let
x,y € X be two distinct points. The coarse Ricci curvature of
(X, dx, mx) along (xy) is:

Wl(mX(Xv ), mx (v, ))
dx(x,y) '

kor(x,y) :=1—




Ollivier-Ricci curvature, details

@ In this paper, we only consider positively weighted finite graphs
G =(V,E).
e For each x,y € V, define mx(x,y) :=

Wy

= m where w,, is the

weight on edge (xy).
@ The metric on G is usual graph metric, the number of edges in the
shortest path.



The End
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