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1. Motivation and Related Work 
• Persistence diagrams (PDs) play a key role in topological data analysis
• PDs enjoy strong stability properties and are widely used
• However, they do not live in a space naturally endowed with a Hilbert

structure and are usually compared with non-Hilbertian distances, such
as the bottleneck distance.
• To in corporate PDs in a convex learning pipeline, several kernels

have been proposed with a strong emphasis on the stability of the
resulting RKHS (Reproducing Kernel Hilbert Space) distance
• In this article, the authors use the sliced Wasserstein distance to define

a new kernel for PDs
• Stable and discriminative



Related Work
• A series of recent contributions have proposed kernels for PDs, falling

into two classes
• The first class of methods builds explicit feature maps
• One can compute and sample functions extracted from PDS (Bubenik,

2015; Adams et al., 2017; Robins & Turner, 2016)
• The second class of methods defines implicitly features maps by

focusing instead on building kernels for PDs
• For instance, Reininghaus et al (2015) use solutions of the heat

differential equation in the plane and compare them with the usual 𝐿"
(ℝ") dot product



2. Background on TDA and Kernels

2. 1 Persistent Homology 
• Persistent Homology is a technique inherited from algebraic topology

for computing stable signature on real-valued functions
• Given 𝑓 ∶ 𝑋	 → 	ℝ as input, persistent homology outputs a planar point

set with multiplicities, called the persistence diagram of 𝑓 denoted by
𝐷𝑔	𝑓.
• It records the topological events ( e.g. creation or merge of a

connected component, creation or filling of a loop, void, etc)
• Each point in the persistence diagram represents the lifespan of a

particular topological feature, with its creation and destruction times as
coordinates





Distance between PDs
Let’s define the 𝑝th diagram distance between PDs. Let 𝑝 ∈ ℕ and 𝐷01, 𝐷02
be two PDs. Let Γ ∶ 	𝐷01 ⊇ 𝐴 → 𝐵 ⊆ 𝐷02 be a partial bijection between 𝐷01
and 𝐷01. Then, for any point 𝑥 ∈ 𝐴, the p-cost of 𝑥 is defined as 𝑐: 𝑥 ≔
𝑥 − Γ(𝑥) ?

: , and for any point 𝑦 ∈ (𝐷01 ⊔ 𝐷02) ∖ (𝐴 ⊔ 𝐵), the p-cost of 𝑦
is defined as 𝑐:C 𝑦 ∶= 𝑦 − 𝜋F(𝑦) ?

: , where 𝜋F is the projection onto to
the diagonal ∆	= 	 𝑥, 𝑥 	|	𝑥 ∈ ℝ . The cost 𝑐:(Γ) is defined as: 𝑐: Γ ≔
(∑ 𝑐: 𝑥 + ∑ 𝑐:C (𝑦)�

M
�
N ) O/:.

We then define the 𝑝𝑡ℎ diagram distance 𝑑: as the cost of the best partial
bijection between the PDs:

In the particular case 𝑝 = 	+∞, the cost of Γ is defined as 𝑐 Γ 	≔
max	{max

N
𝑐O 𝑥 + max

M
𝑐OC(𝑦)}. The corresponding distance 𝑑? is often

called the bottleneck distance.



2.2 Kernel Methods

Positive Definite Kernels
Given a set 𝑋, a function 𝑘 ∶ 𝑋	×	𝑋 → ℝ is called a positive definite kernel
if for all integers 𝑛, for all families 𝑥O, … , 𝑥^ of points in 𝑋, the matrix
𝑘(𝑥_, 𝑥 ) _,`

is itself positive semi-definite. For brevity, positive definite
kernels will be just called kernels in the rest of the paper.
It is known that kernels generalize scalar products, in the sense that, given a
kernel 𝑘, there exists a Reproducing Kernel Hilbert Space (RKHS) ℋb and
a feature map 𝜙 ∶ 𝑋 → ℋb such that 𝑘 𝑥O, 𝑥" = 𝜙 𝑥O , 𝜙(𝑥") ℋd . A
kernel 𝑘 also induces a distance 𝑑b on 𝑋 that can be computed as the
Hilbert norm of the difference between two embeddings:

𝑑b" 𝑥O, 𝑥" ≝ 𝑘 𝑥O, 𝑥O + 𝑘 𝑥", 𝑥" − 2𝑘(𝑥O, 𝑥")



Negative Definite and RBF Kernels 
• A standard way to construct a kernel is to exponentiate the negative

of a Euclidean distance.
• Gaussian kernel: 𝑘g 𝑥, 𝑦 = exp − NjM 2

"g2
, where 𝜎 > 0.

• Theorem of Berg et al. (1984) (Theorem 3.2.2, p.74) states that such
an approach to build kernels, namely setting 𝑘g 𝑥, 𝑦 ≝
exp	(− n(N,M)

"g2
), for an arbitrary function 𝑓 can only yield a valid

positive definite kernel for all 𝜎 > 0 if and only if 𝑓 is a negative
semi-definite function, namely that, for all integers 𝑛, ∀𝑥O, … , 𝑥^ ∈
𝑋, ∀𝑎O, … , 𝑎^ ∈ ℝ^ such that ∑ 𝑎_ = 0�

_ , ∑ 𝑎_𝑎 𝑓 𝑥_, 𝑥 ≤ 0�
_,` .

• In this article, the authors use an approximation of 𝑑O with the
Sliced Wasserstein distance and use it to define a RBF kernel



2.3 Wasserstein distance for unnormalized measures on ℝ
• The 1-Wasserstein distance for nonnegative, not necessarily normalized,

measures on the real line.
• Let 𝜇 and 𝜈 be two nonnegative measures on the real line such that 𝜇 = µ(ℝ)

and 𝜈 = 𝜈(ℝ) are equal to the same number 𝑟. Let’s define the three following
objects:

where ∏(𝜇, 𝜈) is the set of measures on ℝ" with marginals 𝜇 and 𝜈, and 𝑀jO and
𝑁jO the generalized quantile functions of the probability measures 𝜇/𝑟 and 𝜈/𝑟
respectively



Proposition 2.1
•𝒲 =	𝒬{ = ℒ. Additionally (i) 𝒬{ is negative definite on the space of

measures of mass 𝑟; (ii) for any three positive measures 𝜇, 𝜈, 𝛾 such that
𝜇 = 𝜈 , we have ℒ 𝜇 + 𝛾, 𝜈 + 𝛾 = ℒ(𝜇, 𝜈).

The equality between (2) and (3) is only valid for probability measures on
the real line. Because the cost function ~ is homogeneous, we see that the
scaling factor 𝑟 can be removed when considering the quantile function and
multiplied back. The equality between (2) and (4) is due to the well known
Kantorovich duality for a distance cost which can also be trivially
generalized to unnormalized measures.
The definition of 𝒬{ shows that the Wasserstein distance is the 𝑙O norm of
𝑟𝑀jO − 𝑟𝑁jO, and is therefore a negative definite kernel (as the 𝑙O distance
between two direct representations of 𝜇 and 𝜈 as functions 𝑟𝑀jO and
𝑟𝑁jO), proving point (i). The second statement is immediate.



• An important practical remark:
For two unnormalized uniform empirical measures 𝜇 = ∑ 𝛿N�

^
_�O

and ν = ∑ 𝛿M�
^
_�O of the same size, with ordered 𝑥O ≤ ⋯ ≤ 𝑥^	and

𝑦O ≤ ⋯ ≤ 𝑦 , one has: 𝒲 𝜇, 𝜈 = ∑ 𝑥_ − 𝑦_ = 𝑋 − 𝑌 O
^
_�O ,

where 𝑋 = (𝑥O, … ,	𝑥^ ) ∈ ℝ^ and Y = (𝑦O, … , 𝑦 ) ∈ ℝ^



3. The Sliced Wasserstein Kernel
• The idea underlying this metric is to slice the plane with lines passing

through the origin, to project the measures onto these lines where 𝒲 is
computed, and to integrate those distances over all possible lines.

Definition 3.1. Given 𝜃 ∈ ℝ" with 𝜃 " = 1, let 𝐿(𝜃) denote the line
𝜆𝜃	|	𝜆 ∈ ℝ , and let 𝜋�	: 	ℝ" → 𝐿(𝜃) be the orthogonal projection onto
𝐿(𝜃). Let	𝐷𝑔O, 𝐷𝑔" be two PDs, and let 𝜇O� ≔ ∑ 𝛿��(:)

�
:∈�01 and 𝜇O∆� ≔

∑ 𝛿��∘�� :
�
:∈�01 , and similarly for 𝜇"� , where 𝜋F is the orthogonal

projection onto the diagonal. Then, the Sliced Wasserstein distance is defined
as:

𝑆𝑊(𝐷𝑔O, 𝐷𝑔") ≝
1
2𝜋� 𝒲 𝜇O� + 𝜇"∆� , 𝜇"� + 𝜇O∆� 𝑑𝜃

𝕤1
Since 𝒬{ is negative semi-definite, we can conclude that 𝑆𝑊 itself is
negative semi-definite.



Lemma 3.2 Let 𝑋 be the set of bounded and finite
PDs. Then, 𝑆𝑊 is negative semi-definite on 𝑋.



• Hence, the theorem of Berg et al. (1984) allows us to define a valid
kernel with:

Theorem 3.3 Let 𝑋 be the set of bounded PDs with cardinalities
bounded by 𝑁 ∈ ℕ∗. Let 𝐷𝑔O, 𝐷𝑔" ∈ 𝑋. Then, one has:

𝑑O(𝐷𝑔O, 𝐷𝑔")
2𝑀 ≤ 𝑆𝑊(𝐷𝑔O, 𝐷𝑔") ≤ 2 2� 𝑑O(𝐷𝑔O, 𝐷𝑔")

where 𝑀 = 1 + 2𝑁(2𝑁 − 1)







Computation
In practice, the authors propose to approximate 𝑘�� in 𝑂(𝑁𝑙𝑜𝑔(𝑁))
time using Algorithm 1.



4 Experiments
• PSS. The Persistence Scale Space kernel 𝑘��� (Reininghaus et al., 2015)
• PWG. The Persistence Weighted Gaussian kernel 𝑘��� (Kusano et al.,

2016; 2017)
• Experiment: 3D shape segmentation. The goal is to produce point

classifiers for 3D shapes.
• Use some categories of the mesh segmentation benchmark of Chen et al

. (Chen et al., 2009), which contains 3D shapes classified in several
categories (“airplane”, “human”, “ant”, …). For each category, the goal
is to design a classifier that can assign, to each point in the shape, a label
that describes the relative location of that point in the shape. To train
classifiers, we compute a PD per point using the geodesic distance
function to this point.



Results


