Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Distance to the Measure Geometric inference for measures based on distance functions The DTM-signature for a geometric comparison of metric-measure spaces from samples

Zhengchao Wan

the Ohio State University

wan.252@osu.edu

<□> <@> < E> < E> E のQで 1/31

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Geometric inference problem

Question

Given a noisy point cloud approximation C of a compact set $K \subset \mathbb{R}^d$, how can we recover geometric and topological informations about K, such as its curvature, boundaries, Betti numbers, etc. knowing only the point cloud C?

Zhengchao Wan

DTM

Offset Reconstruction

DTM signature

Statistical test

End

Inference using distance functions

One idea to retrieve information of a point cloud is to consider the R-offset of the point cloud - that is the union of balls of radius R whose center lie in the point cloud.

This offset makes good estimation of the topology, normal cones, and curvature measures of the underlying object, shown in previous literature.

<□> <@> < E> < E> E のQ 3/31

The main tool used is a notion of **distance function**.

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

Enc

Inference using distance functions

For a compact
$$K \subset \mathbb{R}^d$$
,

$$d_{\mathcal{K}}: \mathbb{R}^d o \mathbb{R}$$

 $x \mapsto \operatorname{dist}(x, \mathcal{K})$

(ロ) (母) (目) (目) (日) (4/31)

1 d_K is 1-Lipschitz.

2 d_K^2 is 1-semiconcave.

3 $||d_K - d_{K'}||_{\infty} \leq d_H(K, K').$

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Unfortunately, offset-based methods do not work well at all in the presence of outliers. For example, the number of connected components will be overestimated if one adds just a single data point far from the original point cloud.

Zhengchao Wan

Solution to outliers

<□ > < @ > < E > < E > E のQで 6/31

DTM

Offset Recor struction

DTM signature

Statistical test

End

Replace the distance function to a set K by a **distance function to a measure**. (Chazal, et al 2010)

Zhengchao Wan

Distance to a Measure

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DTM

Offset Recon struction

DTM signature

Statistical test

End

Notice $d_{\mathcal{K}}(x) = \min_{y \in \mathcal{K}} ||x - y|| = \min\{r > 0 : B(x, r) \cap \mathcal{K} \neq \emptyset\}.$

Given a probability measure μ on \mathbb{R}^d , we mimick the formula above:

$$\delta_{\mu,m}: x \in \mathbb{R}^d \mapsto \inf\{r > 0; \mu(\bar{B}(x,r)) > m\},\$$

which is 1-Lipschitz but not semi-concave.

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Distance to a Measure

<□> < @> < E> < E> E のQで 8/31

Definition

For any measure μ with finite second moment and a positive mass parameter $m_0 > 0$, the distance function to measure (DTM) μ is defined by the formula:

$$d^2_{\mu,m_0}:\mathbb{R}^n
ightarrow\mathbb{R},x\mapsto rac{1}{m_0}\int_0^{m_0}\delta_{\mu,m}(x)^2dm.$$

Recall $\delta_{\mu,m}(x) = \inf\{r > 0; \mu(\overline{B}(x,r)) > m\}.$

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Example

Let $C = \{p_1, \dots, p_n\}$ be a point cloud and $\mu_C = \frac{1}{n} \sum_i \delta_{p_i}$. Then function δ_{μ_C,m_0} with $m_0 = k/n$ evaluated at $x \in \mathbb{R}^d$ equal to the distance between x and its kth nearest neighbor in C. Given $S \subset C$ with |S| = k, define $\operatorname{Vor}_C(S) = \{x \in \mathbb{R}^d : \forall p_i \notin S, d(x, p_i) > d(x, S).\}$, which means its elements take S as their k first nearest neighbors in C.

$$\forall x \in \operatorname{Vor}_{\mathcal{C}}(\mathcal{S}), d^{2}_{\mu_{\mathcal{C}}, \frac{k}{n}}(x) = \frac{n}{k} \sum_{p \in \mathcal{S}} \|x - p\|^{2}$$

<□> < @> < E> < E> E のQ (* 9/31)

Zhengchao Wan

DTM

Offset Reconstruction

DTM signature

Statistical test

End

Equivalent formulation

Proposition

1 DTM is the minimal cost of the following problem:

$$d_{\mu,m_0}(x) = \min_{\tilde{\mu}} \left\{ W_2(\delta_x, \frac{1}{m_0}\tilde{\mu}); \tilde{\mu}(\mathbb{R}^d) = m_0, \tilde{\mu} \leq \mu \right\}$$

- 2 Denote the set of minimizers as $\mathcal{R}_{\mu,m_0}(x)$. Then for each $\tilde{\mu}_{x,m_0} \in \mathcal{R}_{\mu,m_0}(x)$,
 - $\operatorname{supp}(\tilde{\mu}_{x,m_0}) \subset \bar{B}(x,\delta_{\mu,m_0}(x));$
 - $\tilde{\mu}_{x,m_0}\Big|_{B(x,\delta_{\mu,m_0}(x))} = \mu\Big|_{B(x,\delta_{\mu,m_0}(x))};$ • $\tilde{\mu}_{x,m_0} \leq \mu.$
- **3** For any $\tilde{\mu}_{x,m_0} \in \mathcal{R}_{\mu,m_0}(x)$,

$$d_{\mu,m_0}^2(x) = \frac{1}{m_0} \int_{h \in \mathbb{R}^d} \|h - x\|^2 d\tilde{\mu}_{x,m_0} = W_2^2 \Big(\delta_x, \frac{1}{m_0} \tilde{\mu}_{x,m_0} \Big).$$

< □ > < @ > < E > < E > E の < ○ 10/31

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Regularity Properties

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 11/31

Proposition

- d²_{μ,m0} is semiconcave, which means ||x||² d²_{μ,m0} is convex;
 d²_{μ,m0} is differentiable at a point x iff supp(μ) ∩ ∂B(x, δ_{μ,m0}(x)) contains at most 1 point;
- d²_{μ,m0} is differentiable almost everywhere in ℝ^d in Lebesgue measure. (directly from item 1)
- **4** d_{μ,m_0} is 1-Lipschitz.

Zhengchao Wan

Stability of DTM

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 12/31

DTM

Offset Recon struction

DTM signature

Statistical test

End

Theorem (DTM stability theorem)

If μ, ν are two probability measures on \mathbb{R}^d and $m_0 > 0$, then

$$\|d_{\mu,m_0} - d_{
u,m_0}\|_\infty \leq rac{1}{\sqrt{m_0}} W_2(\mu,
u).$$

Zhengchao Wan

DTM

Offset Reconstruction

DTM signature

Statistical test

End

Uniform Convergence of DTM

Lemma

If μ is a compactly-supported measure, then d_S is the uniform limit of d_{μ,m_0} as m_0 converges to 0, where $S = \text{supp}(\mu)$, i.e.,

$$\lim_{m_0\to 0}\left\|d_{\mu,m_0}-d_{\mathcal{S}}\right\|_{\infty}=0.$$

Remark

If μ has dimension at most k > 0, i.e. $\mu(B(x, \epsilon)) \ge C\epsilon^k, \forall x \in S$ when ϵ is small, then we can control the convergence speed:

$$\|d_{\mu,m_0}-d_S\|_{\infty}=O(m_0^{1/k}).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Zhengchao Wan

DTM

Offset Reconstruction

DTM signature

Statistical test

End

Reconstruction from noisy data

If μ is a probability measure of dimension at most k > 0 with compact support $K \subset \mathbb{R}^d$, and μ' is another probability measure, one has

$$egin{aligned} ig\| d_{\mathcal{K}} - d_{\mu',m_0} ig\|_{\infty} &\leq ig\| d_{\mathcal{K}} - d_{\mu,m_0} ig\|_{\infty} + ig\| d_{\mu,m_0} - d_{\mu',m_0} ig\|_{\infty} \ &\leq O(m_0^{1/k}) + rac{1}{\sqrt{m_0}} W_2(\mu,\mu'). \end{aligned}$$

Zhengchao Wan

DTM

Offset Reconstruction

DTM signatur

Statistical test

End

Reconstruction from noisy data

Define α -reach of K, $\alpha \in (0, 1]$ as $r_{\alpha}(K) = \inf\{d_{K}(x) > 0 : \|\nabla_{x}d_{K}\| \le \alpha\}.$ Theorem Suppose μ has dimension at most k with compact support $K \subset \mathbb{R}^{d}$ such that $r_{\alpha}(K) > 0$ for some α . For any $0 < \eta < r_{\alpha}(K), \exists m_{1} = m_{1}(\mu, \alpha, \eta) > 0$ and $C = C(m_{1}) > 0$ such that: for any $m_{0} < m_{1}$ and μ' satisfying $W_{2}(\mu, \mu') < C\sqrt{m_{0}}, d_{\mu',m_{0}}^{-1}([0, \eta])$ is homotopy equivalent to the offset $d_{K}^{-1}([0, r])$ for $0 < r < r_{\alpha}(K)$.

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · の Q · 15/31</p>

Example

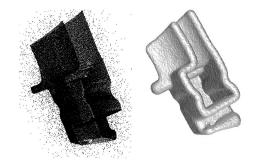


Figure: On the left, a point cloud sampled on a mechanical part to which 10% of outliers have been added- the outliers are uniformly distributed in a box enclosing the original point cloud. On the right, the reconstruction of an isosurface of the distance function d_{μ_c,m_0} to the uniform probability measure on this point cloud.

Offset Reconstruction

Distance to the Measure

DTM signature

Statistical test

End

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

How to determine that two *N*-samples are from the same underlying space?

DTM based asymptotic statistical test. (Brecheteau 2017)

DTM-signature

DTM

Offset Recon struction

Distance to the Measure

DTM signature

Statistical test

End

Definition (DTM-signature)

The **DTM-signature** associated to some mm-space (X, δ, μ) , denoted $d_{\mu,m}(\mu)$, is the distribution of the real valued random variable $d_{\mu,m}(Y)$ where Y is some random variable of law μ .

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Stability of DTM

Proposition

Given two mm-spaces $(X, \delta_X, \mu), (Y, \delta_Y, \nu)$, we have

$$W_1(d_{\mu,m}(\mu),d_{
u,m}(
u))\leq rac{1}{m}GW_1(X,Y).$$

Proposition

If $(X, \delta_X, \mu), (Y, \delta_Y, \nu)$ are embedded into some metric space (Z, δ) , then we can upper bound $W_1(d_{\mu,m}(\mu), d_{\nu,m}(\nu))$ by

 $W_1(\mu,\nu)+\min\{\|d_{\mu,m}-d_{\nu,m}\|_{\infty,\operatorname{supp}(\mu)},\|d_{\mu,m}-d_{\nu,m}\|_{\infty,\operatorname{supp}(\nu)}\},\$

and more generally by $(1 + \frac{1}{m})W_1(\mu, \nu)$.

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Non discriminative example

There are non isomorphic $(X, \delta, \mu), (X, \delta, \nu)$ with $d_{\mu,m}(\mu) = d_{\nu,m}(\nu)$.

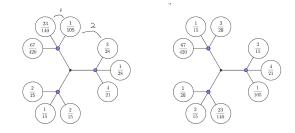


Figure: Each cluster has the same weight 1/3.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Discriminative results

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Let $(O, ||||_2, \mu_O), (O', ||||_2, \mu_{O'})$ be two mm-spaces, for O, O'two non-empty bounded open subset of \mathbb{R}^d satisfying $O = (\bar{O})^\circ$ and $O = (\bar{O'})^\circ, \mu_O, \mu_{O'}$ uniform measures. A lower bound for $W_1(d_{\mu_O,m}(\mu_O), d_{\mu_{O'},m}(\mu_{O'}))$ is given by:

$$\mathcal{C}|\mathrm{Leb}_d(\mathcal{O})^{rac{1}{d}} - \mathrm{Leb}_d(\mathcal{O}')^{rac{1}{d}}|,$$

where C depends on m, ϵ, O, O', d .

Remark

DTM can be discriminative under some conditions.

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Statistic test

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given two *N*-samples from the mm-spaces $(X, \delta, \mu), (Y, \gamma, \nu)$, we want to build a algorithm using these two samples to test the null hypothesis:

 H_0 "two mm-spaces X, Y are isomorphic",

against its alternative:

 H_1 "two mm-spaces X, Y are not isomorphic",

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

The test proposed in the paper is based on the fact that the DTM-signature associated to two isomorphic mm-spaces are equal, which leads to $W_1(d_{\mu,m}(\mu), d_{\nu,m}(\nu)) = 0$.

Idea

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 24/31

Distance to the Measure

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Given two *N*-samples from the mm-spaces $(X, \delta, \mu), (Y, \gamma, \nu)$, choose randomly two *n*-samples from them respectively, which gives four empirical measures, $\hat{\mu}_n, \hat{\mu}_N, \hat{\nu}_n, \hat{\nu}_N$.

Test statistic: $T_{N,n,m}(\mu,\nu) = \sqrt{n}W_1(d_{\hat{\mu}_N,m}(\hat{\mu}_n), d_{\hat{\nu}_N,m}(\hat{\nu}_n)).$

Denote the law of $T_{N,n,m}(\mu,\nu)$ as $\mathcal{L}_{N,n,m}(\mu,\nu)$.

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Lemma

If two mm-spaces are isomorphic, then $\mathcal{L}_{N,n,m}(\mu,\nu) = \mathcal{L}_{N,n,m}(\nu,\nu) = \mathcal{L}_{N,n,m}(\mu,\mu) = \frac{1}{2}\mathcal{L}_{N,n,m}(\mu,\mu) + \frac{1}{2}\mathcal{L}_{N,n,m}(\nu,\nu).$

Remark

 $\frac{1}{2}\mathcal{L}_{N,n,m}(\mu,\mu) + \frac{1}{2}\mathcal{L}_{N,n,m}(\nu,\nu) \text{ is the distribution of } ZT_{N,n,m}(\mu,\mu) + (1-Z)T_{N,n,m}(\nu,\nu), \text{ where } Z \text{ is another independent random variable with Bernoulli distribution.}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Zhengchao Wan

DTM

Offset Reconstruction

DTM signature

Statistical test

End

The α -quantile $q_{\alpha,N,n}$ of $\frac{1}{2}\mathcal{L}_{N,n,m}(\mu,\mu) + \frac{1}{2}\mathcal{L}_{N,n,m}(\nu,\nu)$ will be approximated by the α -quantile $\hat{q}_{\alpha,N,n}$ of $\frac{1}{2}\mathcal{L}_{N,n,m}^{*}(\hat{\mu}_{N},\hat{\mu}_{N}) + \frac{1}{2}\mathcal{L}_{N,n,m}^{*}(\hat{\nu}_{N},\hat{\nu}_{N}).$

Here $\mathcal{L}_{N,n,m}^{*}(\hat{\mu}_{N}, \hat{\mu}_{N})$ stands for the distribution of $T_{N,n,m}(\hat{\mu}_{N}, \hat{\mu}_{N}) = \sqrt{n} W_{1}(d_{\hat{\mu}_{N},m}(\mu_{n}^{*}), d_{\hat{\mu}_{N},m}(\mu'^{*}_{n}))$ conditionally to $\hat{\mu}_{N}$, where μ_{n}^{*} and ${\mu'^{*}}_{n}$ are two independent *n*-samples of law $\hat{\mu}_{N}$.

We deal with the **test**:

$$\phi_{N} = \mathbf{1}_{T_{N,n,m}(\mu,\nu) \ge \hat{q}_{\alpha,N,n}}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bootstrap method

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 27/31

Algorithm 1: Test Procedure

Input: P and Q N-samples from μ (respectively ν), N, n, m, α , N_{MC} even; # Compute T the test statistic Take P' a random subset of P of size n: Take Q' a random subset of Q of size n: $T \leftarrow \sqrt{n} W_1(\mathbf{d}_{\mathbb{1}_P,m}(\mathbb{1}_{P'}), \mathbf{d}_{\mathbb{1}_Q,m}(\mathbb{1}_{Q'}));$ # Compute boot a N_{MC} -sample from the bootstrap law $dtmP \leftarrow (d_{\mathbb{1}_{P},m}(x))_{x \in P};$ $dtmQ \leftarrow (d_{1,0,m}(x))_{x \in O};$ Let *boot* be empty: for j in $1..|N_{MC}/2|$: Let $dtmP_1$ and $dtmP_2$ be two independent *n*-samples from $\mathbb{1}_{dtmP}$; Let $dtmQ_1$ and $dtmQ_2$ be two independent *n*-samples from $\mathbb{1}_{dtmQ}$; Add $\sqrt{n}W_1(\mathbb{1}_{dtmP_1}, \mathbb{1}_{dtmP_2})$ and $\sqrt{n}W_1(\mathbb{1}_{dtmQ_1}, \mathbb{1}_{dtmQ_2})$ to boot; # Compute aalph, the α -guantile of boot Let *qalph* be the $|N_{MC} - N_{MC} \times \alpha|$ th smallest element of *boot*; **Output**: (T > qalph)

Distance to the Measure

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

For properly chosen *n* depending on *N*, for example, $N = cn^{\rho}$, with $\rho > \frac{\max\{d,2\}}{2}$, test is of asymptotic level α , i.e.

$$\limsup_{N\to\infty}\mathbb{P}_{(\mu,\nu)\in H_0}(\phi_N=1)\leq \alpha.$$

Asymptotic level $\boldsymbol{\alpha}$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ^Q 28/31

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

Numerical illustrations

<ロト < 回 ト < 三 ト < 三 ト 三 の Q (P 29/31)

 μ_{v} : distribution of $(R \sin(vR) + 0.03M, R \cos(vR) + 0.03M')$ with R, M, M' independent variables; M and M' from the standard normal distribution and R uniform on (0, 1). Sample N = 2000 points from two measure, choose $\alpha = 0.05, m = 0.05, n = 20, N_{MC} = 1000.$

Zhengchao Wan

DTM

Offset Recon struction

DTM signature

Statistical test

End

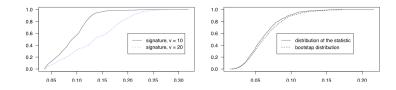


Figure: Left: DTM-signature estimates. Right: Bootstrap validity, v = 10.

v	15	20	30	40	100
type I error DTM	0.050	0.049	0.051	0.044	0.051
power \mathbf{DTM}	0.525	0.884	0.987	0.977	0.985
power \mathbf{KS}	0.768	0.402	0.465	0.414	0.422

Figure: Type 1 error and power approximations by repeating 1000 times.

Zhengchac Wan

DTM

Offset Recor struction

DTM signature

Statistical test

End

Thank you!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □