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How to compare datasets ?

Howdifferent one two given diferets?

jet (6 ,91 [dt(5,* [
+(0 ,5)

Applications one clear :

- Clustering
- Classification
-vizualization (via CMDS)
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Applications
· shope,matchina

translativ
. Language

Alvarez-Mellis etal

· Chemistry .
[Kawano-Meson)

· Metagenomics
(multicomics)
Demetci etal

(Blumbers et al . )



A more basic question :

~

Whatis a dateet



one initial idea :G dataset is a point Cloud&
modulo rigid transformations

Istendand in Cemeter) ↓

Emage : Sokai etal) · 2 dataset is e metic Space

·
two datasets are considered to be

the some iff they are isometric

~ We'll use on enrichment of this representation
of datasete .



...........~dataset is a

metric measureepee . (m . m . space, forchart

:X = (X,dx , MX) whe

· ( ,dx) compact metric Space

· MX fully supported Borel probability measure on X

MW: collection of all mm-spaces.



Thediscute setting
S

In the discrete world , XC MW is depresented as
DISTANCE WEIGHT

MATRIX Vector

nx + nX . nX

· Mx(xj)..... 8S
x (i,j) Mt



mpct mmse
&

........... X= (X
,
11. 1,Imeasure............-

:
normalite
e
name

&XCIA compact= X= (X, 11
... 11
,MX)

with Leb(X) > O

Clebesque measure)



4) x= SCRDX = (S, ds ,e)
(The circle

S

X = Riemonnism Mfld /metric tensorGx
-> dx = geodesic distance↳

(normalized velume)

-> MX=(x)



Gromov-Wasserstein Alignment of Word Embedding Spaces
David Alvarez-Melis, Tommi S. Jaakkola
EMNLP'18: Empirical Methods in Natural Language Processing. 2018.

X = lexicon

(4) A "longuage" (&x = strength of semantic relationship(
Mx = relative frequency of word.

Automatic longuage translation
via alignmentif"
"Word umbedding spaces"



Landscape :
-

Y
.
z Mar

- dist(X ,%)↳I ⑨ *
T -] 1ie

- dataet

MWsall datasete ?



*= (*, 1017/ 8x) ; the one point datanet

· servesa "reference" point (like zero ER)

· distance toX should reflect size (like Kol



Landscape :
-

Y
.
z Mar

- dist(X ,%)↳I ⑨ *
T -] 1ie

- dataet

MWsall datasete ?



gal:Constructdefine the

But before that we need to declare

-qualityofdateti
E : MYM*-40,1)

non-smo Insomorphic



1 Two mm . spres X&Y are

Asomorphic , devoted XE]

= E : X+Y isometry J.t .
E *MX=My

(measure preservingsometry)



# : the pushforward

XxxO4" (A)

-: measurablemushforwardwasaa
defined by : for E Ey
(Mx)(x) := MX (4

-

(A)



What is on isometry
ht (X ,&x)

,
[5ds) be metric spaces.

A map 4 :X-+Y
i on eometry between X & Y off :

-

1.o s ostancereserving : ESEX dxHi
= d., 14) is(l)

2 .
4 is surjective

D
X



Let Two mm . spres X&Y are

Asomorphic , devoted XE]

<E -F : X + Y isometry J.t.

#Mx=My

(measure preservingsometry)



Mea-example !... X

... Y

= XEJ

(no isometry respects the weights



The construction of

dist : M*xM- R+

( ,3) dist(X, y)

(st xEY(= dist(x,3)=5)

Minidea : to relate X with I me
soft maps"

(stoarstic)



&ef Given X
,
JEMm

,

a coping between
X and J is any u, probability measure
on XXY St its marginals are
-

Mx & My :

M

XXY
()+M=Mi (

X Y.

[)#M =MY MXMy



M
In probabilistic* ( IEm forgonMeation

=> between MX &My
III'llIIIII
My

Eat :1 You can always find at leastane coupling :

u = Mx*My the product measure.

(2) Whom Y=<*2 => M= M * &* is the uni choice .

(3) If F : X ->Y is on somorphem ->> My := Lidx #)#MX is a coupling



Howgood is a given M

Let p31 *
Pef The p-distortion of M. Y

disp(m) := (PothAveragedifference
=mom ((dx(p) -dy(,8)(P)]

"P



Expanding into a more explicit formle:

displ =(((pi-desde
For later reference, in the finite setting :

( () =(e (pipsn) - dis (5 ,31)/Pesmne]
"P.)



&ef . The p-th Gromor-Wasserstein distance
betwee X&Y is defined by

&wip (X ,8) := min disp(r)
M coupling

i .e .: one wants to find the best coupling

-> our construction of dist in damp !



Komple 2.dow ,p(X,*) = (S)(x(XX11)
*
Mx(Mxluny

"P

=: diamp(X)

(,
(01)

,8x) [The p-diameter of X]

This is because we have unique coupling MXS*
between My & S*



L
ur-

X
-

........ diamp (4) M

&......

Consequence



Now we have functions :

· E :Mx Ma- 40 , 13
&

· dawp : MxM* R+
How on they related
Is it truethat dawp(X.Y)=0E) XEY &



Main Theorems Memolizood , Sturm 2012) For every p3/
--

dswip is a legitimate distance on AME :

(1) It is symmetric

(2) dswp(X ,2) = 0 <= XE

(3)
It satisfies

the triangle inequality
(3) (0,dsw ,p) is Not complete.

Furthermore,

(4)
It is an intrinsic/geodesic distance .

-

() (* den2) is Alexandrov wate cours,o



ur Example
Yo
......diam, (x)

M
+
sw,p(x,3)

-

-↳-I ----B*
By the thangh inequality,

Eldiamp (x)-diempD)/
=dew

,p(X,3)-(diam,
(x)+diam, B))



#historicalNote :

M
.
Gromor < ·

D
.Wasserstein

i L . Kontorovich

Y G. Monge .

etricGeometry OptimalTransport
The Gromor-Wasserstein

distance is a generalization( &of the to called Gromov-Hausdoeff distance
,

2 notion which is useful in Metric/Differential/Riemannica Geometry



d
compted

In the discrete world· XCMW is depresented as
DISTANCE WEIGHT

MATRIX Vector

nx + nX . nX

· Mx(xj)8
x (i,j) Mt



Given X
,3 , finte , o couplingm is a motix

Mij,o
M

& Mij
= My(i) fi

S [Mij = M_,(j) fj↳ H
Linearly

a - ny-
Constrained



Soy p:1 for simplicity·
- Eight

dis
, (M) = [ (k) = de) Mis Me
-

-

=
Iine MijM bilinea
ijkl for

#(i)= min
.

Quadrati

- functional
-

C linearly constrained

---

but I need NOT be PSD ingeneral
=> but have

.....easy to solveexactly gradient-

descent !



A number of computational techniques & implementations.
have been proposed :

· "Alternate" optimization

· Entropic regularization (Cuturi &Peye')
·
POT (Python OT project)

· See :



Any way , given the hardness, it makes sense to look for :

-
LOWER BOUNDS

(x,3)>, LB (X,3)
Erier

difficult



#simpleidea:Global distribution of
distances

Fairly classical ideaX= (X , dx , Mx) Popular in Comp . Chemistry
and Shope Analysis
(Osada et al 2002)

(lataset) X =- &Hy (ob. measureS

⑩
histgrauX Shope/dot A interpoint distances



Pef dHx = (x)#Mx@MX is the global distribution

(GDD)
A of distances

Hy : Cumulative of the measure day

Hx(t) = m0Mx(x)(dx(x2) x+)



-Proposition (p = 1)

daw, (X ,2), d (dHx , dHy) =: SLB, (X, 2)
(Second lower board)

'Wasserstein
distance onR

I

&

&mark : The Wasserstein distance on R has an explicit formula !

SLB
,
(x,3)= ( (Hx(t) -Hy(t)/dt -

=> easily computable



Question How good is SLB ?
-

i
. e, is it true that

SLB(X
,3) = 0 1= X= Y &

&ote SLB(x ,3) =0 <) dHy = dHy

=> question is whether

dHy =dHy> XEY &
⑤

I
. E

. we want to know how strong istheSignature



Much can be said about this question ...

S



Much can be said about this question ...

S



Discussion
27

· There are higher order" distributional invariants
(both local & globse)
~ tradeoff between discriminative powe & computational ease.

· Connection between GW distance & Weisfeler-Lehman test

-> applications to GNNU (graph neural networks)

·
Instances When (variants of) dow can be

computed/approximated in polynomial time.
· Recent : exact determination of daw (SS) no benchmarking



Thank You
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