

How to compare datasets ? How different are two given detests? $i^{dist}(\Delta, O)$? $i^{dist}(\Box, \Box)$? $i^{dist}(O, \Box)$? Applications are clear: Clustering Classification Vizualization (via cMDS)

		Þis	TANCG		MTR	X
	· · · · · · · · · · · · · · · · · ·					
		0	1.2 1.5	2 0.7	3.1 4.1	2.1
	liet		0		3.2 0.4	0.5
					2.9 1.8	2.1
		\bigcirc	· · · · ·	0.6	3.4 2.05	1.1
$\wedge \nabla \nabla$		\bigcirc		Ø		0.9
					0 3.2	3.4
						1.2
						0
"bag of Shapes"						
					· · · · · ·	

• •	• •	••••		• •	• •			11	E	Ŕ	k i	R	(-	• •	, 1	(/	ł	L	• •	(C		И,	ſ	7	E	A	R j	ľ	/	9)	•	• •	• •	•	•	• •	•	• •
• •	•		•		• •				• •				•	• •	•	•		•	•	• •		• •	•	•	• •	•	•					•	•	•		•	•	• •	•	• •
					• •															6	•			•			•													• •
• •				•	• •		• •		• •			• •		• •				•	•	. —	~			h	• •		•	•		•			•	•				• •		• •
• •					• •		• •	•	• •	•	•	• •		• •		•		•	•	· (-	ŀĮ		•	•			• •		•	•	•			•	• •	•	• •
				· ·		λĹ		-	• •		•	•	•	• •				•		• • •		• •			٦.		•			•		•	•	•			•	• •	•	• •
				\triangleleft	O/	10	Ø	> 4		•	•					•		•			\bigcap																	• •		
			0	12	1.5	2 0.7	3.1	ч	2.1																															
		• • •		-0	1.7 2.	.) • 1.g	3.2	0.4 *	0.5						. .																									
		Ō	•	•	O D.			.8	2.1			-			2	>				• •	Λ.																			• •
		\overline{O}	•	•			3.4	2.05	1.1	•				• •						· · /	Δ	. •		•	• •		•			1				•				• •		• •
• •		0	•	•				l.g [']	0.9			• •	•	• •				•	•	· · ·		• •	•		-					1		•	•	•			•	• •	•	• •
• •	•		•	•	•	0	0	3.2	34		٠	• •		• •				•		• •1	∇	•			•					F					-			• •		• •
	•	_ · 7	•	•	•	•	0	0	1.2	_			•	• •				•	•	• •		• •		•	·					1		•	•				•	• •	•	• •
		\bigtriangleup						0)											2		2	ر ا																	
																					1-7				1															
																				.	Y																			• •
					• •		• •		• •											• •		• •			• •		•							•				• •		• •
• •				•	• •		• •	•	• •			• •		• •				•	•	• •		• •			• •		•			•			•	•			•	• •	•	• •
• •			•		• •		• •	•	• •	•	•	• •	•	• •		•		•	•	• •	-	 	····· /	++++	· · · ·	1:1				1										<u> </u>
									• •													C)							2.9										• •
• •									• •																• •													• •		

Applications H EN STATE Shape Insteling (Regre et al) Langrage translatin (Alvorez-Hellis et al) • Chemistry. (Kawano - Mason) Metagenomics (multi-omics) Demetci et al Blumberg et al-

A mone basic guestion: What is a dataset 2

One initial	itea: 0	dataset is	point constant	Cloud ~ R
	(Standard in Oemsty)	bound raying	11 11 2 1 01 101 1 101 2	
(Imige: Sokie dal)	• 2	dataset	5 o m	etric Space
	• two the	datasets are some iff th	considered Ley dre isom	to be etnic
. .	· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
~~~ (I	re'll use on -	enrichment of th of distist	is regresenta	tion

a dataset is a metric measure spre. (m.m. spoce, for short) A triple:  $\chi = (\chi, d_{\chi}, \mu_{\chi})$  ahere: (X, dx) compact metric space Mx fully supported Borel probability measure on X M " collection of all mm-spaces.

In the	discrete workd,	XEMW	is represented	l aj
	PISTANCE MATRIX			
	N _Y × N _X	n.,		• • • •
	2 × × ·	×		
			· · · · · · · · · · · · · · ·	
			~~ (*j)	
	i - dx	· · · · · · · · · · · ·		
		· · · · · · · · · · · · · · ·		

Examples of mm-spaces. (1) Any point cloud X C Rd  $\chi = \left(\chi_{1} \parallel \dots \parallel \right) \left\{ \mu_{\chi} \left( z \right) = \frac{1}{n} \quad \forall z \} \right\}$ uniform probability measure Lesergne measure  $(k) X \subset \mathbb{R}^{d} \quad \text{compact} \implies \\ \text{aith Leb}(X) > 0$  $\mathcal{X} = (\times, \| \|, \|, \mathbb{X}_{\times})$ (Lebesque measure)

1x1  $X = S' C R^2$ ds1, length()  $(\mathfrak{S}')$ (The circle) = Riemannian mild W/metric tensor gx dx = geodesic distance = Nolx Velx(X) d (14.4 ) ( hormalized volume)

X = lexicon language dx = strength of remantic relation dup = relative frequency of word. HI EN STATE Automotre longuoge translation Via alignment of "Coord combedding spaces" पश्चि Gromov-Wasserstein Alignment of Word Embedding Spaces David Alvarez-Melis, Tommi S. Jaakkola EMNLP'18: Empirical Methods in Natural Language Processing. 2018.

Landsco dist(X, Z) 4"<u>=</u> all datasets

 $* = (*, (0)), \delta_{*});$  the one joint dataset · Serves os "reforence" point (like Zero ER) • distance to * should reflect size (like |x-0|=12) xeR

Landsco dist(X, Z) 4"<u>=</u> all datasets

gool: Construct/define dist But before that we need to declare Equality of datasets  $\simeq: M \times M^{\circ} \longrightarrow \{0,1\}$ 

Det Two mm. spaces X&Y are isomorphic, densted  $\chi \cong I$ ∃ I: X → Y isometry J.t. <=>  $T_{\pm}\mu_{\chi} = \mu_{\gamma}$ (measure preserving 150 metry)

# : the pushforward  $(\Sigma_{x})\mu_{x}) \varphi$ Ă. 4: measurable map ( ) pushforward measure Mx: measure on x ( ) (P+Mx is measure on Y defined by : for AEZy  $(A) := H_{\star}(\Psi(A))$ 

What is on isometry 2 Let (X,dx) (Y,dy) be metric Spaces. A map P:X is an asometry between X&Y aff: 1. 9 is distance preserving: # x,x'ex dx fx, n')= dy (4(=), 8(=)) 2. 9 is surjective. (x) (y) (y) (y) (y) (y)

Det Two mm. spaces X&Y are isomorphic, densted  $\chi \cong I$ <=> J Y: X -> Y isometry J.t.  $T_{\pm}M_{X} = M_{Y}$ (measure preserving 110metry)

Non-example			
		1 $ 3$ $ 4$	K
·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·		$\cdot \cdot $	$\mathcal{I}$
	X≇J	<td> </td>	
( no	isometry	respects the c	reight)

The construction of dist: Mx M - R+  $(\mathcal{X},\mathcal{J}) \longmapsto \operatorname{drst}(\mathcal{X},\mathcal{J})$  $(x, x) \neq x \neq x \neq x \neq x \neq x$ Main rdea: to relate X with J me "Saft more" (stochastic)

Def Given X, JE M, 2 coupling betreen and J is any p, probability measure on XXX st its marginals are  $(\pi_i)_{\#} \mu = \mu$ π, τ2  $(\underline{\mathbf{w}})_{\#} \overset{\mu}{=} \overset{\mu}{\to}$ 

TOTAL In probabilistic Jargon 1 is 2 Joint distribution TAAT between Mr. & My WAIr MY Fact (1) You can always find at least one coupling:  $M = M_{X} O M_{Y}$ , the product measure. (2) When  $Y = h * 2 \implies M = M_{X} O S_{X}$  is the unique choice. (3) If Y: X -> Y is an isomorphism =) My := (idx, y) # Mx is a coupling

2 given het p>1 The p-distortion of p, disp(p) := ( pth Average difference of distances. )-dy (3,3))) 

Expanding into a more explicit formule:  $dis_{p}(\mathbf{n}) = \left( \int \int \int \int \int dx (n, x') - dx (\partial, y') \right)^{p} (dx \times dy) \mu(dx' \times dy') \int^{p} (dx' \times dy')$ For later reference, in the finite setting  $d_{s_p}(n) = \left\{ \sum_{ij \neq l} \left[ \frac{d_{x_i}(x_k) - d_{y_j}}{d_{y_j}} \right]^p M_{ij} M_{ke} \right\}^{p_{ke}}$ 

Def. the p-th Gromov-Wasserstein distance betneen XRJ is defined by  $d_{GW,P}(\chi, \mathcal{J}) := \frac{1}{2} \min_{\mu \text{ coupling}} dis_{\mu}(\mu)$ i.e.: one wants to find the Lest coupling our construction of dist à dewip !!

 $\frac{(\chi_{2})}{(\chi_{1})} = \left[ \int (d_{\chi}(\chi_{1}))^{P} \mu_{\chi}(d_{\chi}) \mu_{\chi}(d_{\chi}) \right]^{P}$ =: diam (X)(×6,((•)), ×) [the p-diameter of X] This is because as have unique coupling MX & S.x between MX & Sx

$\gamma$	4ª
$\frac{1}{2} \operatorname{diam}_{p}(\mathcal{X})$	
$\int_{\frac{1}{2}}^{\frac{1}{2}} diron_{p}(\overline{d})$	*
	Consequence)

Now we have functions:  $\underline{S}: M^{w} \times M^{w} \longrightarrow forly$  $d_{GWP}: M \xrightarrow{w} M \xrightarrow{w} R_{+}$ How one they neloted ______ Is it true that dong (X.Y)=0 (=) X=J ?

Main Tl	reonens (M	émoli 2008, S	turm 2012)	For every	きし
olswip	is a legit	impte dist	ance m	<u>M</u> w \≅	
(') (`)	it is sy	mmetric (y) = 0	<b>∠</b> ⇒ 7	X≚J	
( <b>)</b> ( <b>)</b>	It satisf (M ^{or} , d _{sw} , p) i , thermore,	his the NOT Comple	triangle	ine jurilitz	
Fu (4)	Tt is an $(M^{w}, d_{Q})$	n intringre	geodesiz a	listance.	
(5)	[M", da	w.2) (1	Alexandro v	uith Curr?	. 0

9×2mple  $d_{sv,p}(x, y)$ By the mangle megnality,  $\frac{1}{2} \left| \operatorname{diam}_{p} (x) - \operatorname{diam}_{p} (J) \right| \leq \operatorname{d_{GW}}_{p} (x, y) \leq \frac{1}{2} \left( \operatorname{diam}_{p} (x) + \operatorname{diam}_{p} (Y) \right)$ 

A historical Note: M. Gromov , D. Wosserstein L. Kontorourch EL G. Monge. Metric Geometry Optimal Transport The Gromov-Wasserstein distance is a generalization of the so called Gromov-Hansdorff durtance, a notion which is useful in Metric/Differential/Riconsmism Geometry

HOW DO WE COMPUTE dow, 2 In the discrete world. XEMW is represented as DISTANCE WEIGHT VECTOR MATRIX NY Y NX.  $(x_j)$ Ð

Given X, J, finte, a coupling più a matrix Mij 70  $\sum \mu_{ij} = \mathcal{H}_{\mathbf{x}}(i)$ ₩i E My = My . . . Linearly Ontrai red 

Say p=1 for simplicity. - Light dis,  $(\mu) = \sum_{j \neq k} \left[ d_{\chi}(x_{i}, x_{k}) - d_{\chi}(y_{j}, y_{k}) \right] \frac{M_{i}}{M_{i}} \frac{M_{i}}{M_{i}}$ Zijkl Light Hig Hel = UTU bilinear =)  $d_{GW,1}(X, Y) = \frac{1}{2} \min \frac{UTU}{U} \leftarrow Quadratic}{functional}$ L finearly Confrained but [ need NOT be PSD in general - - ) not every to save exactly =) but have graduat descent!

number of computational techniques & implementations been proposed have · "Alternste" optimizet. (Cuturi & Peyne) · Entropic regularization OT project) (Python QQ Computational Optimal Transport: With Applications to Data Science (Foundations and Trends(r) in Machine Learning) by Gabriel Peyre (Author), Marco Cuturi (Author) Paperback Other Sellers \$98.98 - \$99.00 Buy new: \$99.00 Only 4 left in stock (more on the way). Ships from and sold by Amazon.com. **FREE delivery Wednesday** February 23. Order within 15 hrs May be available at a lower price from other sellers, potentially without free Prime shipping Add to Car Buy Now

Any way, given the hardness, it makes sense to look for: LOWER BOUNDS. GOLL:  $d_{GW}$  (X, Y) > LB(X, Y)y & Jier difficult

A simple rider: Global distribution of distances Fairly classical idea  $\mathcal{X} = (X, d_X, P_X)$ Popular in Comp. Chemistry and Shape Asnalysrs (Osada et al 2002) (dotaset) X ~ dH_X (prob. measure) on R Prob ( dx (2, 1) & [t-6], [+5+]) histogram I interpoint distances X Shape/data

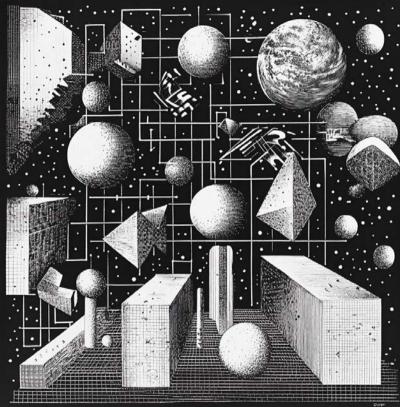
Och dHy = (dx) # Mx OMx is the global dubibution (GDD) of distances HX: Cumulative. of the measure It/x  $H_{\chi}(t) = \mu_{\chi} \otimes \mu_{\chi} \left( \int (x, x') \right) d_{\chi} (x, x') \leq t_{\chi}$ 

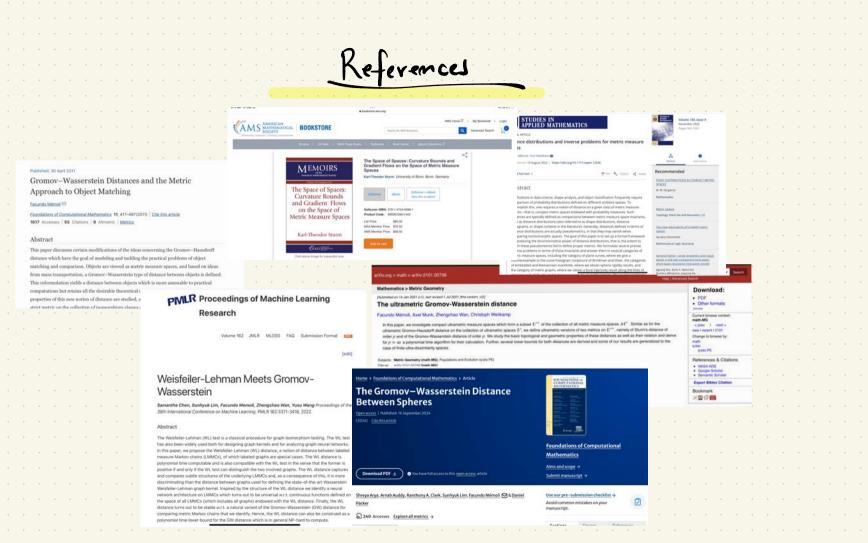
Proposition (p=1)  $d_{GW,1}(X,J) \ge \frac{1}{2} \frac{d_{W,1}^{R}(JH_{X}, dH_{Y}) =: SLB_{1}(X,J)}{(Second lower bound)}$ L'Wasserstein distance on TR Remark The Wasserstein distance on IR has an explicit formule  $SLB_{1}(X,y) = \frac{1}{2} \int_{\infty}^{\infty} |H_{x}(t) - H_{y}(t)| dt$ => essily computable

SLB 2 How good is Question is it true that  $SLB(x, 7) = 0 \iff x \cong 7$  $SLB(x,y) = 0 \iff dH_x = dH_y$ Note  $\Rightarrow$  question is whether  $dH_{\chi} = dH_{\chi} \iff \chi \cong \chi$ I.E. we want to know how strong is the Signature  $\chi \mapsto dH_{\chi}$ 

Much can be said showt this question

Peter Olver's Conjecture leter noticed that -> Consider : In general, answer is NO the ouvres determined Sy all weight and by rad set of 4 4 ( Mx = My = "miniform"). Cx. Joints, G& & Gr, -lad (na Motest) distances distances in X the 7 the 0,0,0,0 0,0,0,0 2,2 2.2 JA VE, JZ VZ JZ, JE, JE, JZ Poler Oper's Gayactore Is the for planar curves that to, to, to, to, to, to, to +2=+2 (=) ど=と) 4.4 4.4. Tisometic (in R2) (Extrinsic diatances) Hx=Hy Example by M. Both L.G. Kemper (m) Bod (2)(joint with Tom Need hom) Jome answers 3 1) if C is sit He = Heirele = G= circle Start with a regular ヨ OCTA GON Hal and an isosceles Hy However Hx = Hy triangle checked by hand ("/ lots of potrance !))


Much can be said showt this question (4) Similar pattern for consedded surfaces (3) By "Imoothing" Corners & "rounding" the tringles  $\frac{Theorem}{\forall E>0 \ \exists curres \ X_E, J_E}$ within E of the runit circle
S.t.  $\mathcal{R}_E \neq J_E$  but Proportion  $\mathcal{G} \subset \mathbb{R}^3$  considered closed since  $\mathcal{G} \subset \mathbb{R}^3$  then  $\mathcal{H}_{\mathcal{G}} = \mathcal{H}_{\mathcal{S}^2}$   $\mathcal{G} \cong \mathcal{S}^2$ 241 >>> (5) This "rights" does not extend to arbitrary neighborhoods of 5²  $H_{\chi_2} = H_{\chi_2}$ 23 *** 🚳 🌒 (6) The Riccussion Setting Corollary to cloug's righting (cf. Bund-Ayers) (7) Hy contains topological information ! Lemma M closed Riem Willd. dim (M)=d H₁(t) =  $\frac{u_{4}(t)}{Wd(n)} \left(1 - \frac{\int_{m} Sol_{n}(p) ode_{n}(b_{p})}{G(d_{4}t) d_{4}(n)} t^{2} + O(t)\right)$ Corollory but (Mign) be d-dimensional closed from open with Ric > d-1. Then, Corollary when d=2 1.  $\exists \epsilon = \epsilon(a) > 0$  sit  $d_{W_1}^R (dH_M, dH_{S^a}) < \epsilon$   $\Rightarrow M is differente S^a$ Hmlt) necovers homeomorphism the of M. (via Gauss-Bonnet thm) S given = X(Y) 2. if dHn=dHs => M = Sd


51 of 131

Discussion There are higher order distributional invariants (both local & global) trade off Letneer discriminative power & computational ease · Connection between GW distance & Weisfeler-Lehmon test - applications to GNNA (graph neural networks) • Instances when (variants of) dow can be Computed/approximated in polynomial time. · Recent : exact determination of daw (SE, SE) no benchmarking

hom AL DISTANCE MATRIX ng > dGW Δ 0.5 2 0.4 0 11 13 0.1 0 3.1 Ø 0 "bug of shapes "

. .



