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Some definitions..

• Let (Z, d) be a compact metric space.

• For closed A, B ⊂ Z, we define the Hausdorff distance as:

dZ
H(A, B) = max(max

b∈B
min
a∈A

d(a, b),max
a∈A

min
b∈B

d(a, b)).

• For probability measures µA and µB on Z and p ≥ 1, we define the
Wasserstein distance as:

dZ
W,p(µA, µB) = min

µ

(∫∫

Z×Z
dp(x, y)µ(dx, dy)

)1/p

,

where µ ∈M(µA, µB), the collection of all measure couplings between
µA and µB : probability measures on Z × Z with marginals µA and µB ,
respectively.
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Comparison of objects



• Given a compact metric space Z, dZ , called the ambient space, one
can define objects to be either

– compact subsets of Z: C Z , or
– probability measures on Z: Cw Z .

I will be redundant and say that objects in Cw Z are pairs A, µA where A is
the support of the probability measure µA.

• In each case, one can put a metric on objects and regard the collection of
all objects as a metric space in itself.

• In the case of C Z , this metric is the Hausdorff metric dZ
H. One has:

Theorem (Blaschke). For Z, dZ compact, C Z , dZ
H is also a compact

metric space.

• In the case of Cw Z , this metric is the Wasserstein metric dZ
W,p. One

has:

Theorem (Prokhorov). For Z, dZ compact, Cw Z , dZ
W,p is also a

compact metric space. 4



• What if one wants to consider ”invariances”? consider for example ob-
jects in Rd: you may want to factor out all rigid isometries.

5

T acts on sets in the usual way: T (A) = {T (a), a ∈ A}. On measures it acts
by push-forward: If C is measurable, then T (µ)(C) = T#µ(C) = µ

(
T−1(C)

)
.
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• This can be incorporated into our formulation: let I Z be the isometry
group on Z, and define

– For A, B C Z ,

dZ,iso
H A, B : inf

T I Z
dZ
H A, T B .

– For A, B Cw Z ,

dZ,iso
W,p A, B : inf

T I Z
dZ
W,p A, T B .

• These two constructions provide metrics on the (isometry classes of) ob-
jects in Z.

• This is what one could call the extrinsic approach to object matching:
there is an ambient space.

6
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The intrinsic approach, briefly.

• What if we regard objects as metric spaces? This may make sense since
we are actually trying to get rid of ambient space isometries.

• For example, given A C Z , upgrade this object to the metric space
A, dA where dA is the restriction of dZ to A A.

• Then, given two objects A, B, one could attempt to compute some notion
of distance between the metric spaces:

dGH A, dA , B, dB .

Here, GH stands for Gromov-Hausdorff.

• Similarly, for A, µA , B, µB Cw Z one constructs the measure met-
ric spaces (mm-spaces: metric spaces enriched with a probability mea-
sure) A, dA, µA and B, dB , µB . Then, one would compute some dis-
tance on mm-spaces:

dGW,p A, dA, µA B, dB , µB .

GW stands for Gromov-Wasserstein.
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• There are practical examples that motivate pursuing the intrinsic ap-
proach.

• Consider for example invariance to bends, articulations or poses: the
geodesic distance is (approximately) preserved– but there is no ambient
space isometry that maps one shape to a vicinity of the other.
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dGH X, dX , Y, dY : inf
Z,f,g

dZ
H f X , g Y .

11

The Gromov construction: a distance between compact
metric spaces.

• Let X denote the collection of all compact metric spaces.

• Let (X, dX), (Y, dY ) ∈ X and consider all metric spaces (Z, d) s.t. there
exist maps f : X → Z and g : Y → Z, isometric embeddings of X and
Y into Z, respectively.

• Inside Z, one can compute the Hausdorff distance between the isometric
copies f(X) of X and g(Y ) of Y .

• Then, take infimum over all possible choices of Z, f and g. The result is
known as the Gromov-Hausdorff distance.
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Example. Let compact A, B R be endowed with the Euclidean metric. Then,

dGH A, B inf
γ R

dR
H A, B γ .

If A 0, a and B 0, b for some a, b 0, then

dGH A, B
1
2

a b
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A bit more background: 
correspondences
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Definition [Correspondences]

For sets A and B, a subset C ⊂ A×B is a correspondence (between A and B)
if and and only if

• ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R

• ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R

Let C(A, B) denote the set of all possible correspondences between sets A
and B.

Note that in the case nA = nB , correspondences are larger than bijections.



correspondences
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0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

A

Note that when A and B are finite, C C A, B can be represented by a
matrix ra,b 0, 1 nA nB s.t.

a A

rab 1 b B

b B

rab 1 a A

!



correspondences

14

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

A

Note that when A and B are finite, C C A, B can be represented by a
matrix ra,b 0, 1 nA nB s.t.

a A

rab 1 b B

b B

rab 1 a A

!



correspondences

14

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

A

Note that when A and B are finite, C C A, B can be represented by a
matrix ra,b 0, 1 nA nB s.t.

a A

rab 1 b B

b B

rab 1 a A

!



correspondences

14

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 0 1 0

0 1 0 1 1 0 1

1 0 1 1 0 1 0

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

A

Note that when A and B are finite, C C A, B can be represented by a
matrix ra,b 0, 1 nA nB s.t.

a A

rab 1 b B

b B

rab 1 a A

!



correspondences

14

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 0 1 0

0 1 0 1 1 0 1

1 0 1 1 0 1 0

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

A

Note that when A and B are finite, C C A, B can be represented by a
matrix ra,b 0, 1 nA nB s.t.

a A

rab 1 b B

b B

rab 1 a A

!



Another expression for the 
GH distance

Theorem. [BBI] For compact metric spaces X, dX and Y, dY ,

dGH X, Y
1
2

inf
C

max
x,y , x ,y C

dX x, x dY y, y

Remark. Let ΓX,Y x, y, x , y dX x, x dY y, y . We write, compactly,

dGH X, Y
1
2

inf
C

ΓX,Y L C C



Properties of the GH distance.

Theorem ([BBI]). 1. Let X, dX , Y, dY and Z, dZ be metric spaces
then

dGH X,Y dGH X, Z dGH Y, Z .

2. If dGH X, Y 0 and X, dX , Y, dY are compact metric spaces, then
X, dX and Y, dY are isometric.

3. Let X X be a closed subset of the compact metric space X, dX . Then,

dGH X, X dX
H X, X .

4. For compact metric spaces X, dX and Y, dY :

1
2

diam X diam Y dGH X,Y

1
2

max diam X ,diam Y

5. Compact families: Let L 0 and N : R N. Define F L, N X
to be s.t. any X F has diam X L and for all ε 0, X admits an
ε-net with at most N ε points. Then F L, N , dGH is pre-compact.
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Example. Let compact A, B R be endowed with the Euclidean metric. Then,

dGH A, B inf
γ R

dR
H A, B γ .

If A 0, a and B 0, b for some a, b 0, then

dGH A, B
1
2

a b

Example. From item 4, since diam A a and diam B b, then dGH A, B
1
2 a b . Then by previous computation,

dGH 0, a , 0, b
1
2

a b .
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Comments...

• The GH distance has been used in the applied object matching literature
for a few years now [MS04,MS05,BBK06,M07,M08,..].

• It provides a useful set of ideas for reasoning about desirable properties of
matching algorithms.

• Without further assumptions on the underlying metric spaces, it leads
combinatorial optimization problems, more precisely, Bottleneck
Quadratic Assignment problems, which are NP hard.

• Haven’t been able to explain or relate to too many pre-existing practical
approaches to object matching. There’s a plethora of methods: it would
be nice to understand inter-relation between them.

• Furthermore, the GH distance is a ”pessimistic” measure of similarity: it
is based on L dissimilarities: sensitivity to errors.

• From now on, we’ll talk about the Gromov-Wasserstein distance, which
yields continuous optimization problems directly and admits lower
bounds based on easily computable and previously reported metric invar-
tiants.
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Construction of the Gromov-Wasserstein distance(s)

mm-spaces and their invariants



3/4 1/4
1

1/2
1

1/2

Definition. • The support supp µ of a probability measure µ on a compact
metric space X, dX is the minimal closed set outside of which there is
zero mass.

• An mm-space is a triple X, dX , µX where X, dX is a compact metric
space and µX is probability measure on X with full support: supp µX

X. Let Xw denote the collection of all mm-spaces.

• An isomorphism of mm-spaces is an isometry Φ : X Y s.t. Φ#µX

µY .

20
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Some invariants of mm-spaces.
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Example (Eccentricity on real shapes.). This is three dimensional model of a
horse. The metric is estimated from the mesh using Dijkstra, the measure is the
uniform one. Red means high, blue means low. Notice how extremities get high
values of the eccentricity (p 1).

sX,p x dX x, Lp µX

x X

dX x, x
p
µX x

1 p

.
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Local distributions of distances

hX x, t µX B x, t
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Some invariants of mm-spaces.

• Given a mm-space X, dX , µX define

– p-eccentricity: sX,p : X R , x dX x, Lp µX
.

– Local distribution of distances:

hX : X R 0, 1 , x, t µX B x, t .

• Invariants similar to these have been used in the CS/EE literature. In
particular, the eccentricity was explored by Hamza and Krim in 2002. The
distribution of distances underlies a very famous work by the Princeton
shape retrieval group. The Local shape distributions is similar to the
integral invariants used by Manay-Soatto et al and the Shape Contexts of
Bengio and Malik.
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Construction of the GW distance
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The Gromov construction: same thing for mm-spaces!

Fix p 1. We may now define the Gromov-Wasserstein distance between
X, Y Xw as

dGW,p X, dX , µX , Y, dY , µY inf
Z,f,g

dZ
W,p f#µX , g#µY ,

where f, g are isometric embeddings into Z.

Remark. This definition is due to K.T. Sturm [Sturm06].

This metric does not seem computationally appealing. In [M07] we con-
structed a closely related distance that is more suitable for practical computa-
tions.
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• Have lower bounds for dGW,p X,Y involving the invariants I described,
[M07,M08].

• These invariants have been reported in the literature and have been shown
to provide good discrimination over databases of objects. Therefore the
interest in inter-relating them and in finding these lbs.

• These invariants cannot be controlled by the GH distance alone: a notion
of weight of a point is involved and therefore GW distances are natural
here.

• Computation of these lower bounds leads to simpler problems than solving
the GH or GW distaces.

• The question arises as to whether one could obtain lower bounds for the
GH or GW distances of a completely different nature: how about persis-
tent topology type of invariants?
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Lower bounds using persistence

Joint work with F. Chazal, D. Cohen-Steiner, L. Guibas and S. Oudot, [CCGMO09].
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Motivation: Clustering

• Imagine you have underlying metric space X, dX from which you can
take only finitely many samples.

• Let X, dX be a finite sampling from X where we assume dX is the restric-
tion metric.

• Apply a hierarchical clustering method S to X, dX and obtain a
dendrogram:
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• Can ask the question: how sensitive is S X, dX to X, dX ?

• Can I guarantee that the answers I get from two different X1 and X2 are
similar in some way when samplings become denser and denser in X?

• Dendrograms are rooted trees and therefore equivalent to ultrametrics.
Then can regard S as a map fromM to U , whereM (resp. U) is collection
of all finite metric (resp. ultrametric) spaces s.t. S : Mn Un for n N.

• Let’s assume that S corresponds to single linkage clustering.

• Fix a finite metric space Z, dZ . For each ε 0 consider the equivalence
relation ε on Z given by z ε z if and only if there exist z0, z1, . . . , zn

in Z s.t. z0 z, zn z and dZ zi, zi 1 ε. We define

uZ z, z : min ε 0 s.t. z ε z .

• It turns out that uZ is an ultrametric on Z and that S Z, dZ Z, uZ

[CM07]
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Stability

• So, can regard a hierarchical clustering procedure as a map from metric
spaces to metric spaces.

• What about the question we set out to investigate?

Theorem ([CM07]). For all X, Y M,

dGH S X ,S Y dGH X, Y .

Proof. Let η dGH X, Y and C be a correspondence between X and Y s.t.

dX x, x dY y, y 2η for all x, y , x , y C.

Fix x, y , x , y C and let x x0, x1, . . . , xn x X be s.t. uX x, x maxi dX xi, xi 1 .
For each i 1, . . . , n 1 pick yi Y s.t. xi, yi C and let y0 y, yn y . Then, it
follows that

uY y, y max
i

dY yi, yi 1 max
i

dX xi, xi 1 2η uX x, x 2η.
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1 1 1 1 1Ln

∆n

11

1 1

1

Stability – lower bounds

• Can view stability results for invariants as providing lower bounds for
the GH distance.

• how good is the Lower bound given by the previous Theorem?

Remark. The bound is tight. Indeed, pick Xa to be two points at distance
a 0. Then, S Xa Xa. Hence, the equality holds for Xa and Xb,
a, b 0; i.e.:

dGH S Xa ,S Xb dGH Xa, Xb .

• But there are cases that suggest one should hope for more.
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what’s next:

• go beyond 0-th Homology

• use functions to probe the data/shapes.
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Simplicial complexes and friends

Definition. • Given a set of points X and k 0, 1, 2, . . ., a k-simplex is
a an unordered list x0, x1, . . . , xk of different points in X. The faces of
this simplex are all the (k-1)-simplices of the form x0, . . . , xi 1, xi 1, . . . , xk

for some i 0, 1, . . . , k .

• A simplicial complex K is a finite collection of simplices such that every
face of a simplex of K is also in K and the intersection of any two simplices
is either empty or a common face of each of them.

• A filtration K of a simplicial complex K is a nested sequence of subcom-
plexes Kα0 Kα1 Kαm K, where α0 α1 αm is
an ordered sequence of real numbers.

• Given a simplex σ K, the filtration value F σ of σ is given by

F σ αi σ

where i σ min i s.t. σ Kαi 1.
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Remark. Now we see a construction of Simplicial complexes and filtrations
that arises from finite metric spaces.

Rips Simplicial complexes and filtrations

Definition. Given X, dX M and a parameter α 0, the Rips complex
Rα X, dX is the abstract simplicial complex of vertex set X, whose simplices
are those σ X s.t.

• σ

• diam σ 2α.

The Rips filtration of X, dX , noted R X, dX , is the nested family of
Rips complexes obtained by varying parameter α from 0 to .

Note that underlying simplicial complex over which the Rips filtration is
defined is K X (collection of non-empty subsets of X). Also, given any σ
K X , F σ 1

2diam σ .



35

Remark. Now we see a construction of Simplicial complexes and filtrations
that arises from finite metric spaces.

Rips Simplicial complexes and filtrations

Definition. Given X, dX M and a parameter α 0, the Rips complex
Rα X, dX is the abstract simplicial complex of vertex set X, whose simplices
are those σ X s.t.

• σ

• diam σ 2α.

The Rips filtration of X, dX , noted R X, dX , is the nested family of
Rips complexes obtained by varying parameter α from 0 to .

Note that underlying simplicial complex over which the Rips filtration is
defined is K X (collection of non-empty subsets of X). Also, given any σ
K X , F σ 1

2diam σ .



36



36



37

Remark. We now want to compute certain invariants out of the filtrations.
These will be analogues to the dendrograms we discussed in the situation of
clustering.

Persistence diagrams

• Recall that filtration K of a simplicial complex K is a nested sequence of
subcomplexes Kα0 Kα1 Kαm K, where α0 α1

αm are in R.

• The inclusion maps induce a persistence module, involving their k-
dimensional homology groups:

Hk Kα0

φ1
0 Hk Kα1

φ2
1 φm

m 1
Hk Kαm . (1)

• The structure of this persistence module can be encoded as a multi-set of
points DkK, called the k-th persistence diagram of K
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Let R R , and ∆ x, x : x R .

Definition. • The k-th persistence diagram DkK of the filtration K is a
multi-subset of the extended plane R2

contained in

∆ α0, , αm α0, , αm, α .

• The multiplicity of all points in ∆ is set to , while the multiplicities of
the points of the form αi, αj , 0 i j , are defined in terms of
the ranks of the homomorphisms φj

i φj
j 1 φi 1

i .

Remark. Two persistence diagrams can be compared using the bottleneck dis-
tance.

Definition. The bottleneck distance dB A, B between two multi-sets in R2
, l

is the quantity minγ maxp A p γ p , where γ ranges over all bijections from
A to B.
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shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y DkR X , DkR Y



40

how is the simil between 
distance function 
persistence and Cech--

tameness

Stability results

Theorem (I, [CCGMO09]). For any finite metric spaces X, dX and Y, dY ,
and any k N,

dB DkR X, dX ,DkR Y, dY dGH X, dX , Y, dY .

Proof. Let η dGH X, Y and d be a metric on Z X Y s.t. d Z,d
H X, Y η. Then

Z, d is a finite metric space of cardinality n #X #Y . Hence, it can be embedded
isometrically into Rn, " . Let Z , X , Y be subsets of Rn s.t. Z X Y , X isom X ,

Y isom Y and Z isom Z . Then, d Rn,!
H X , Y η. This means that δX , δY : Rn

R defined by
p min

x X
x p !

and
p min

y Y
y p !

are s.t. δX δY L η. One can see that δX and δY are tame and hence their persistence

diagrams are η-close in the bottleneck distance according to standard stability theorem. But,

then these persistence diagrams agree with the persistence diagrams of the Čech filtrations

of X and Y . Finally, since the underlying metric is " , the Čech filtrations agree with the

Rips filtrations.
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2 2 1 ε

Remark. The bound is tight. Indeed, fix ε 0 and let X be a set of two points
at distance 2 and Y a set of two points at distance 2 2ε. Then,

dGH X, dX , Y, dY ε,

and

D0R X, dX 0, , 0, 1 , D0R Y, dY 0, , 0, 1 ε .

• This theorem states GH-stability of persistence diagrams arising from
Rips filtrations.

• Another way of saying this: it provides a lower bound for the GH distance!
Can I use it for object recognition?

• Not very discriminative– can do better: use functions!
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Metric spaces endowed with functions

We now consider triples X, dX , fX where X, dX M and fX : X R.
Let M1 denote the collection of all such triples. We declare X, Y M1 to be
isomorphic whenever there exist an isometry Φ : X Y s.t. fY Φ fX .

We put a metric on the collection of all isomorphism classes of M1 by suit-
ably extending the GH distance:

d1
GH X, Y inf

C
max

1
2

ΓX,Y L C C , fX fY L C .

Definition. Given X, dX , fX M1 and a parameter α 0, the modified
Rips complex Rα X, dX , fX is the abstract simplicial complex of vertex set
Xα : f 1

X , α , whose simplices are those σ Xα s.t.

• σ

• diam σ 2α.

The modified Rips filtration of X, dX , fX , noted R X, dX , fX , is the
nested family of modified Rips complexes obtained by varying parameter α from 0 to .

Given any σ K X , F σ max 1
2diam σ ,maxx σ fX x .
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Metric spaces endowed with functions

We now consider triples X, dX , fX where X, dX M and fX : X R.
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Stability results with functions

Theorem (II, [CCGMO09]). For any finite metric spaces endowed with
functions X, dX , fX and Y, dY , fY , and any k N,

dB DkR X, dX , fX ,DkR Y, dY , fY d1
GH X, dX , fX , Y, dY , fY .

Proof. Similar arguments, need to invoke stronger stability result of [CCSGGO09].

Remark. When fX fY 0 we recover Theorem (I).

Remark. • Goal is to obtain lower bounds for GH distance.

• Idea: let functions fX and fY depend on the metric!

• Need canonical constructions: methods for constructing a function out
of a metric that can be applied to any metric space.

• Example: eccentricity. Given a metric space X, dX , one can form the
triple X, dX , eccX where eccX x maxx X dX x, x .

• So the idea is to try to come up with a rich family of maps h :M M1.
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Definition. For each L 0 let HL denote the class of maps h :M M1 s.t.

fX fY L C L
1
2

ΓX,Y L C C

for all X, Y M, C C X, Y , where h X, dX X, dX , fX and h Y, dY

Y, dY , fY .

(some kind of Lipschitz continuity across different metric spaces)

Remark. Note that if h HL, then

d1
GH h X , h Y max 1, L dGH X, Y .

Example. Let hecc be the map that assigns to each metric space X, dX the
triple X, dX , eccX . Then, hecc H2.
Proof. Let C be s.t. ΓX,Y L C C 2η. Then,

eccX x max
x X

dX x, x dX x, x dY y, y 2η

for all x, y , x , y C. Then, by symmetry, eccX x eccY y 2η and the conclusion

follows.
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Corollary. For all X, Y M, and k N

1
max 1, L

sup
h HL

dB DkR h X ,DkR h Y dGH X, Y .

Remark (Aggregation properties). Let h, h HL. Then,

• sup h :M M1 given by X, dX X, dX ,max fX is in HL.

• max h, h : M M1 given by X, dX X, dX ,max fX , fX is in
HL.

• h h :M M1 given by X, dX X, dX , fX fX is in H2L.

• For any α,β R, α h β given by X, dX X, dX , α fX β is in
H λ L.

Note that DkR h X and DkR α h β X are not related by a simple
transformation.
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Remark (Critique).

• It is difficult to find many functions in HL that are easily computable.

• For example, N ecc eccentricities are too expensive:

x max
x1,...,xN

min
i j

dX xi, xj

is in H2 but for N large is not an option. (complexity is O #X N 1 .

• Also, functions such as Lp eccentricites are beyond HL. For example, one
may consider

eccX
p x

1
#X

x X

dp
X x, x

1 p

, p 1.

But there’s a choice of probability measure implicit in this.. Need to
make this explicit in the formulation.



mm-spaces: more admissible functions

Definition. An mm-space (measure metric space) will be a finite metric space
endowed with a probability measure: a triple X, dX , µX , where µX x 0
for all x X and x X µX x 1. We say that two mm-spaces are isomorphic
if there is an isometry which also respects the weights. Let Mw denote the
collection of all (finite) mm-spaces. Similarly, we may defineMw

1 , the collection
of all cuadruples X, dX , µX , fX where X, dX , µX Mw and fX : X R.



Definition (Coupling). Given two mm-spaces X, Y , a coupling µ of X and Y
is a probability measure on X Y marginals X and Y . Since one regard µ as
a matrix of size #X times#Y , the conditions are that

• µ x, y 0

• x µ x, y µY y for all y Y

• y µ x, y µX x for all x X
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mm-spaces: more admissible functions

Definition. An mm-space (measure metric space) will be a finite metric space
endowed with a probability measure: a triple X, dX , µX , where µX x 0
for all x X and x X µX x 1. We say that two mm-spaces are isomorphic
if there is an isometry which also respects the weights. Let Mw denote the
collection of all (finite) mm-spaces. Similarly, we may defineMw

1 , the collection
of all cuadruples X, dX , µX , fX where X, dX , µX Mw and fX : X R.

Definition. For all X, Y Mw
1 , we also define the distance

d1
GW, X,Y : inf

µ M µX ,µY

max
1
2

ΓX,Y L C µ C µ , fX fY L C µ .
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Definition. For each L 0 let Hw
L denote the class of maps h : Mw Mw

1

s.t.

fX fY L L
1
2

ΓX,Y L R µ R µ

for all X, Y M, µ M µX , µY , where h X, dX , µX X, dX , µX , fX and
h Y, dY , µY Y, dY , µY , fY .

(some kind of Lipschitz continuity across different mm-spaces)

Remark. Note that if h Hw
L , then

d1
GW, h X , h Y max 1, L dGW, X, Y .

Example. For p 1, let heccp be the map that assigns to each mm-space
X, dX , µX the cuadruple X, dX , µX , eccX

p . Then, heccp Hw
2 .

Proof. Let µ be s.t. ΓX,Y L C µ C µ 2η. Then, also,

dX x, dY y,
L C µ

for all x, y C µ .

Write, eccX
p x eccX

p x dX x, !p µX
dY y, !p µY

dX x, dY y, !p µ

2η for all x, y C µ .
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Corollary. For all X, Y Mw, and k N

1
max 1, L

sup
h Hw

L

dB DkR h X ,DkR h Y dGW, X,Y .

Remark (Aggregation properties).

• The collection Hw
L has similar aggregation properties as HL.

• There is a sense in which Hw
L contains all maps in HL.
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Discussion

• The computation of these lower bounds lead to solving bottleneck as-
signment problems. Standard problems.

• Ran these on a database of shapes. There are interesting details about
the implementation.

• The stability theorem is very interesting as it permits to define the notion
of a limit Rips persistent diagram of a compact metric space.



http://math.stanford.edu/~memoli
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